References
- K.H. Lanouette, Heavy Metals Removal, Chem. Eng. (New
York), 84 (1977) 73–80.
- M. Ahmad, Iron and Manganese removal from groundwater,
University of Oslo, 2012.
- R.H. Marchovecchio, J.E. Botte, S.E. Freiji, Heavy Metals, Major
Metals, Trace Elements, In: Handb. Water Anal., CRC Press,
2011.
- WHO, Guidelines for drinking-water quality, In: Reccomendations,
Vol.1, 3rd ed., World Health Organization, Geneva, (2008)
390–399.
- S. Chaturvedi, P.N. Dave, Removal of iron for safe drinking
water, Desalination, 303 (2012) 1–11.
- A. Jusoh, W.H. Cheng, W.M. Low, A. Nora’aini, M.J. Megat
Mohd Noor, Study on the removal of iron and manganese in
groundwater by granular activated carbon, Desalination, 182
(2005) 347–353.
- D. Ellis, C. Bouchard, G. Lantagne, Removal of iron and manganese
from groundwater by oxidation and microfiltration,
Desalination, 130 (2000) 255`–264.
- A. Binti Abdul Kadir, N.B. Othman, N.M. Azmi, Potential
of using Rosa Centifolia to remove iron and manganese in
groundwater treatment, Int. J. Sustain. Constr. Eng. Technol.,
3 (2012) 70–82.
- N.H. Hussin, I. Yusoff, Y. Alias, S. Mohamad, N.Y. Rahim,
M.A. Ashraf, Ionic liquid as a medium to remove iron and
other metal ions: a case study of the North Kelantan Aquifer,
Malaysia, Environ. Earth Sci., 71 (2013) 2105–2113.
- J.H. Potgieter, R.I. Mccrindle, Z. Sihlali, R. Schwarzer,
N. Basson, Removal of iron and manganese from water with a
high organic carbon loading Part I : the effect of various coagulants,
Water, Air Soil Pollut., 162 (2005) 49–59.
- K.H. Choo, H. Lee, S.J. Choi, Iron and manganese removal and
membrane fouling during UF in conjunction with prechlorination
for drinking water treatment, J. Memb. Sci., 267 (2005)
18–26.
- J.L. Lin, C. Huang, J.R. Pan, Y.S. Wang, Fouling mitigation of
a dead-end microfiltration by mixing-enhanced preoxidation
for Fe and Mn removal from groundwater, Colloids Surfaces A
Physicochem. Eng. Asp., 419 (2013) 87–93.
- L.Y. Ng, C.P. Leo, A.W. Mohammad, Optimizing the incorporation
of silica nanoparticles in polysulfone/poly(vinyl alcohol)
membranes with response surface methodology, J. Appl.
Polym. Sci., 121 (2011) 1804–1814.
- E. Mahmoudi, L. Yong, M.M. Ba-abbad, A.W. Mohammad,
Novel nanohybrid polysulfone membrane embedded with silver
nanoparticles on graphene oxide nanoplates, Chem. Eng. J.,
277 (2015) 1–10.
- H. Kelewou, A. Lhassani, M. Merzouki, P. Drogui,
B. Sellamuthu, Salts retention by nanofiltration membranes:
physicochemical and hydrodynamic approaches and modeling,
Desalination, 277 (2011) 106–112.
- M. Kabsch-Korbutowicz, T. Winnicki, Application of modified
polysulfone membranes to the treatment of water solutions
containing humic substances and metal ions, Desalination, 105
(1996) 41–49.
- A.W. Mohammad, R. Othaman, N. Hilal, Potential use of
nanofiltration membranes in treatment of industrial wastewater
from Ni-P electroless plating, Desalination, 168 (2004)
241–252.
- J. Cho, G. Amy, J. Pellegrino, Membrane filtration of natural
organic matter: factors and mechanisms affecting rejection
and flux decline with charged ultrafiltration (UF) membrane,
J. Memb. Sci., 164 (2000) 89–110.
- C.M. Nguyen, S. Bang, J. Cho, K.W. Kim, Performance and
mechanism of arsenic removal from water by a nanofiltration
membrane, Desalination, 245 (2009) 82–94.
- L.A. Richards, M. Vuachère, A.I. Schäfer, Impact of pH on
the removal of fluoride, nitrate and boron by nanofiltration/reverse osmosis, Desalination, 261 (2010) 331–337.
- M. Wang, J. Oh, T. Ghosh, S. Hong, G. Nam, T. Hwang, J.D.
Nam, An interleaved porous laminate composed of reduced
graphene oxide sheets and carbon black spacers by in situ electrophoretic
deposition, RSC Adv., 4 (2014) 3284.
- J. Lee, H.R. Chae, Y.J. Won, K. Lee, C.H. Lee, H.H. Lee, I.C. Kim,
J. Lee, Graphene oxide nanoplatelets composite membrane
with hydrophilic and antifouling properties for wastewater
treatment, J. Memb. Sci., 448 (2013) 223–230.
- S. Bordoloi, S.K. Nath, S. Gogoi, R.K. Dutta, Arsenic and iron
removal from groundwater by oxidation-coagulation at optimized
pH: laboratory and field studies, J. Hazard. Mater., 260
(2013) 618–626.
- M.R. Muthumareeswaran, G.P. Agarwal, Feed concentration
and pH effect on arsenate and phosphate rejection via polyacrylonitrile
ultrafiltration membrane, J. Memb. Sci., 468 (2014)
11–19.
- B.A.M. Al-Rashdi, D.J. Johnson, N. Hilal, Removal of heavy
metal ions by nanofiltration, Desalination, 315 (2013) 2–17.
- Y. Marcus, Thermodynamics of solvation of ions, J. Chem. Soc.
Faraday Trans., 87 (1991) 2995–2999.
- C.V. Gherasim, P. Mikulášek, Influence of operating variables
on the removal of heavy metal ions from aqueous solutions by
nanofiltration, Desalination, 343 (2014) 67–74.
- K. Mehiguene, Y. Garba, S. Taha, N. Gondrexon, G. Dorange,
Influence of operating conditions on the retention of copper
and cadmium in aqueous solutions by nanofiltration: experimental
results and modelling, Sep. Purif. Technol., 15 (1999)
181–187.
- A. De Munari, A.J.C. Semiao, B. Antizar-Ladislao, Retention
of pesticide Endosulfan by nanofiltration: influence of organic
matter-pesticide complexation and solute-membrane interactions,
Water Res., 47 (2013) 3484–3496.
- A. De Munari, A.I. Schäfer, Impact of speciation on removal
of manganese and organic matter by nanofiltration, J. Water
Supply Res. Technol., 59 (2010) 152.
- T.D. Waite, Chemical speciation effects in nanofiltration separation,
In: T.D. Schäfer, Andrea I., Fane, A.G., Waite (Ed.),
Nanofiltration-Principles Appl., Elsevier B.V., (2005) 148–
168.
- J. Schaep, B. Van der Bruggen, C. Vandecasteele, D. Wilms,
Influence of ion size and charge in nanofiltration, Sep. Purif.
Technol., 14 (1998) 155–162.
- M.R. Teixeira, M.J. Rosa, M. Nyström, The role of membrane
charge on nanofiltration performance, J. Membr. Sci., 265 (2005)
160–166.
- J.J. Morgan, Applications and limitations of chemical thermodynamics
in water systems, In: Equilib. Concepts Nat. Water
Syst., American Chemical Society, Washington, 1967.
- S. Bordoloi, M. Nath, R.K. Dutta, pH-conditioning for simultaneous
removal of arsenic and iron ions from groundwater,
Process Saf. Environ. Prot., 91 (2013) 405–414.