References

  1. R. Benelmir, S. Mokraoui, A. Souayed, Numerical analysis of filmwise condensation in a plate fin-and-tube heat exchanger in the presence of non-condensable gases, Heat Mass Transfer, 45 (1990) 1561–1573.
  2. V. Dharma Rao, V. Murali Krishna, K.V. Sharma, P.V.J. Mohana Rao, Convective condensation of vapor in the presence of a non-condensable gases of high concentration in laminar flow in a vertical pipe, Int. J. Heat Mass Transfer, 51 (2008) 6090– 6101.
  3. L. Zhang, H. Zheng, Y. Wu, Experimental study of a horizontal tube falling film evaporation and closed circulation solar desalination system, Renew. Energy, 28(8) (2003) 1187–1199.
  4. Z. Liu, Q. Zhu, Y. Chen, Evaporation heat transfer of falling water film on a horizontal tube bundle, Heat Trans.-Asian Res., 31(1) (2002) 42–55.
  5. Justin D. Talley, Ted Worosz, Seungjin Kim, John R. Buchanan Jr., Characterization of horizontal air-water two-phase flow in a round pipe part I: Flow visualization, Int. J. Multiphase Flow, 76 (2015) 212–222.
  6. Gianfranco Caruso, Damiano Vitale Di Maio, Heat and mass transfer analogy applied to condensation in the presence of noncondensable gases inside inclined tubes, Int. J. Heat Mass Transfer, 68 (2014) 401–414.
  7. S.Z. Kuhn, V.E. Schrock, P.F. Peterson, An investigation of condensation from steam-gas mixtures flowing downward inside a vertical tube, Nucl. Eng. Design, 177 (1997) 53–69.
  8. Y.A. Hassan, and S. Banerjee, Implementation of a non-condensable model in RELAP5/MOD3, Nucl. Eng. Design, 162 (1996) 281–300.
  9. Jun-De Li, CFD simulation of water vapour condensation in the presence of non-condensable gases in vertical cylindrical condensers, Int. J. Heat Mass Transfer, 57 (2013) 708–721.
  10. M.M. SHAH, A general correlation for heat transfer during film condensation inside pipes, Int. J. Heat Mass Transfer, 22 (1979) 547–556.
  11. D. Luo, Inter-phase Transfer Process in Cocurrent Two-Phase Channel Flow, Ph.D Thesis, Georgia Institute of Technology, 1995.
  12. V.P. Carey, Liquid-vapor phase change phenomena, Hemisphere, New York, 1992.
  13. M.S. Al-Johani, A Three-Dimensional Mechanistic Model of Steam Condensers Using Porous Medium Formulation, Ph.D Thesis, Georgia Institute of Technology, 1996
  14. S.B. Al-Shammari, D.R. Webb, P. Heggs, Condensation of steam with and without the presence of non-condensable gaseses in a vertical tube, Desalination, 169 (2004) 151–160.
  15. R. Semiat, and Y. Galperin, Effect of non-condensable gasses on heat transfer in the tower MED seawater desalination plant, Desalination, 140 (2001) 27–46.
  16. S.M. Ghiaasiaan, A.T. Wassel, C.S. Lin, Direct contact condensation in the presence of noncondensable in OC-OTEC condensers, J Solar Energy Eng., 113 (1991).
  17. T. Kageama, P.F. Peterson, V.E. Schrock, Diffusion layer modeling for condensation in vertical tube with noncondensable gases, Nucl. Eng. Design, 141 (1993) 289–302.
  18. D.F., Othmer, The condensation of steam, Ind. Eng. Chem., 21(1929) 576–583
  19. I.Y. Chen, Heat transfer analysis of a falling-film horizontal tube evaporator, Ph.D thesis, the University of Wisconsin-Milwaukee, 1984.
  20. B. Ren, L. Zhang, H. Xu, J. Cao, Z.Y. Tao, Experimental study on condensation of steam/air mixture in a horizontal tube, Experim. Thermal Fluid Sci., 58 (2014) 145–155.
  21. B. Ren, L. Zhang, J.Cao, H. X, Z.Y. Tao, Experimental and theoretical investigation on condensation inside a horizontal tube with noncondensable gas, Int. J. Heat Mass Transfer, 82 (2015) 588–603.
  22. S. Toda, and Y. Hori, Characteristics of two-phase condensing flow by visualization using computed image processing, Nucl. Eng. Design, 141 (1993) 35–46.
  23. E. Nazemi, S.A.H. Feghhi, G.H. Roshani, R. Gholipour Peyvandi, and S. Setayeshi, Precise void fraction measurement in two-phase flows independent of the flow regime using gamma- ray attenuation, Nucl. Eng. Technol., 48 (2016) 64–71.
  24. G.H. Roshani, E. Nazemi, S.A.H. Feghhi, S. Setayeshi, Flow regime identification and void fraction prediction in twophase flows based on gamma ray attenuation, Measurement, 62 (2015) 25–32.
  25. J. Jia, A. Babatunde, M. Wang, Void fraction measurement of gas–liquid two-phase flow from differential pressure, Flow Measurem. Instrument., 41 (2015) 75–80.
  26. R.B. Bird, W.E. Stewart, E.N. Lightfoot, Transport Phenomena, John Wiley and Sons, New York, 1960.
  27. D.K. Edwards, V.E. Denny, A.F. Mills, Transfer Processes, Hemisphere, New York, 2nd ed., 1979.
  28. L. Friedel, Druckabfall bei der Strömung von Gas/Dampf-Flüssigkeits- Gemischen in Rohren, Chem. Ing. Tech. 50 (1978) 167–180.
  29. V.H. Ransom, R.J. Wagner, J.A. Trapp, L.R. Feinaner, G.W. Johnsen, D.M. Kiser, R.A Riemke, RELAP5/MOD2 code manual, volume 1: Code structure, systems models, and solution methods, NUREG/CR-4312, U.S. Nuclear. Regulatory. Commission, 1985.
  30. K.E. Carlson, et. al., RELAP5/MOD3 code manual vol. 1, 2, 3, NUREG/CR-5535, EGG-2596, U.S. Nuclear Regulatory commission, 1990.
  31. M. Ishii, Zubber, Drag coefficient and relative velocity in bubbly droplet or particular flows, AIChE J., 25 (1979) 848–855.
  32. K.O. Passamehmetoglu, et al., TRAC-PF1/MOD2 theory manual, U.S. Nuclear Regulatory Commission Report (Draft), 1990.
  33. G.B. Wallis, One-dimensional two-phase flow, New York, McGraw-Hill, 1969.
  34. A.T. Wassel, A.F. Mills, D.C. Bugby, Analysis of radionuclides retetion in water pools, Nucl. Eng. Design, 90 (1985) 87–104.
  35. R. Kronig, J. C. Brink, On the theory of extraction from falling droplets, Appl. Scient. Res. A2, (1951) 142–154.
  36. H. J. Richter, Separation and two-phase flow model: application to critical two-phase flow, Int. J. Multiphase Flow, 9 (1983) 511.