References

  1. K.M. Yao, M.T. Habibian, C.R. O’Melia, Water and waste water filtration. Concepts and applications, Environ. Sci. Technol., 5 (1971) 1105–1112.
  2. K.J. Ives, Rapid filtration, Water Res., 4 (1970) 201–223.
  3. J.M. Montgomery, Water treatment: principles and design, John Wiley & Sons, New York, NY, 1985.
  4. D.G. Stevenson, Flow and filtration through granular media— the effect of grain and particle size dispersion, Water Res., 31 (1997) 310–322.
  5. R.D. Letterman, Water quality and treatment: a handbook of community water supplies, McGraw Hill, New York, NY, 1999.
  6. W. Viessman, M. Hammer, Water supply and pollution control, 7th ed., Prentice Hall, NJ, 2004.
  7. M.-m. Kim, A.L. Zydney, Effect of electrostatic, hydrodynamic, and Brownian forces on particle trajectories and sieving in normal flow filtration, J. Colloid Interface Sci., 269 (2004) 425–431.
  8. AWWA, Operational control of coagulation and filtration processes, 3rd ed., American Water Works Association, Denver, CO, 2011.
  9. Y. Li, Q. Wang, Y. Wu, W. Li, Z. Liu, Application of micro-flocculation and sand filtration as advanced wastewater treatment technique, Desal. Water Treat., 52 (2014) 1299–1306.
  10. Y. Wu, S. Xia, B. Dong, H. Chu, J. Liu, Study on surface water treatment by hybrid sand filtration and nanofiltration, Desal. Water Treat., 51 (2013) 5327–5336.
  11. G.J. Williams, B. Sheikh, R.B. Holden, T.J. Kouretas, K.L. Nelson, The impact of increased loading rate on granular media, rapid depth filtration of wastewater, Water Res., 41 (2007) 4535–4545.
  12. J. Yu, Y. Li, Z. Liu, W. Zhang, D. Wang, Impact of loading rate and filter height on the retention factor in the model of total coliform (TC) removal in direct rapid sand filtration, Desal. Water Treat., 54 (2015) 140–146.
  13. G. Zhang, X. Kang, P. Zhang, G. Zeng, Pilot study of low-temperature low-turbidity reservoir water treatment using dual-media filtration with micro-flocculation, 2011 International Conference on Multimedia Technology (ICMT), 26–28 July 2011, Hangzhou, CN.
  14. S.T. Mitrouli, A.J. Karabelas, S.G. Yiantsios, P.A. Kjølseth, New granular materials for dual-media filtration of seawater: pilot testing, Sep. Purif. Technol., 65 (2009) 147–155.
  15. R. Han, W. Zou, Z. Zhang, J. Shi, J. Yang, Removal of copper(II) and lead(II) from aqueous solution by manganese oxide coated sand: I. Characterization and kinetic study, J. Hazard. Mater., 137 (2006) 384–395.
  16. D. Liu, J.J. Sansalone, F.K. Cartledge, Comparison of sorptive filter media for treatment of metals in runoff, J. Environ. Eng., 131 (2005) 1178–1186.
  17. S. Babel, T.A. Kurniawan, Low-cost adsorbents for heavy metals uptake from contaminated water: a review, J. Hazard. Mater., 97 (2003) 219–243.
  18. I. Kristiana, C. Joll, A. Heitz, Powdered activated carbon coupled with enhanced coagulation for natural organic matter removal and disinfection by-product control: application in a Western Australian water treatment plant, Chemosphere, 83 (2011) 661–667.
  19. W. Chu, N. Gao, D. Yin, Y. Deng, M.R. Templeton, Ozone–biological activated carbon integrated treatment for removal of precursors of halogenated nitrogenous disinfection by-products, Chemosphere, 86 (2012) 1087–1091.
  20. D.W. Hendricks, Water treatment unit processes: physical and chemical, Taylor and Francis Group, Boca Raton, FL, 2006.
  21. G. Newcombe, M. Drikas, R. Hayes, Influence of characterised natural organic material on activated carbon adsorption: II. Effect on pore volume distribution and adsorption of 2-methylisoborneol, Water Res., 31 (1997) 1065–1073.
  22. L. Li, P.A. Quinlivan, D.R.U. Knappe, Effects of activated carbon surface chemistry and pore structure on the adsorption of organic contaminants from aqueous solution, Carbon, 40 (2002) 2085–2100.
  23. P.-Y. Hu, Y.-H. Hsieh, J.-C. Chen, C.-Y. Chang, Characteristics of manganese-coated sand using SEM and EDAX analysis, J. Colloid Interface Sci., 272 (2004) 308–313.
  24. R.R. Trussell, M. Chang, Review of flow through porous media as applied to head loss in water filters, J. Environ. Eng., 125 (1999) 998–1006.
  25. D.C. Mays, J.R. Hunt, Hydrodynamic aspects of particle clogging in porous media, Environ. Sci. Technol., 39 (2005) 577–584.
  26. S.M. Kau, D.F. Lawler, Dynamics of deep-bed filtration: velocity, depth, and media, J. Environ. Eng., 121 (1995) 850–859.
  27. W. Chen, P. Westerhoff, J.A. Leenheer, K. Booksh, Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter, Environ. Sci. Technol., 37 (2003) 5701–5710.
  28. P.G. Coble, Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy, Mar. Chem., 51 (1996) 325–346.
  29. D. Reynolds, S. Ahmad, Rapid and direct determination of wastewater BOD values using a fluorescence technique, Water Res., 31 (1997) 2012–2018.
  30. J.J. Mobed, S.L. Hemmingsen, J.L. Autry, L.B. McGown, Fluorescence characterization of IHSS humic substances: total luminescence spectra with absorbance correction, Environ. Sci. Technol., 30 (1996) 3061–3065.
  31. S. Ahmad, D. Reynolds, Monitoring of water quality using fluorescence technique: prospect of on-line process control, Water Res., 33 (1999) 2069–2074.
  32. A. Zouboulis, G. Traskas, P. Samaras, Comparison of single and dual media filtration in a full-scale drinking water treatment plant, Desalination, 213 (2007) 334–342.
  33. M.B. Emelko, Removal of viable and inactivated Cryptosporidium by dual- and tri-media filtration, Water Res., 37 (2003) 2998–3008.