References

  1. W. Guan, F.Y. Ji, Q.K. Chen, P. Yan, Q. Zhang, Preparation and phosphorus recovery performance of porous calcium-silicatehydrate, Ceram. Int., 39 (2013) 1385–1391.
  2. M.M. Rahman, M.A.M. Salleh, U. Rashid, A. Ahsan, M.M. Hossain, C.S. Ra, Production of slow release crystal fertilizer from wastewaters through struvite crystallization—A review, Arab. J. Chem., 7 (2014) 139–155.
  3. K.S. Le Corre, E. Valsami-Jones, P. Hobbs, S.A. Parsons, Phosphorus recovery from wastewater by struvite crystallization: A review, Crit. Rev. Env. Sci. Tec., 39 (2009) 433–477.
  4. C. Fang, T. Zhang, P. Li, R.F. Jiang, S.B. Wu, H.Y. Nie, Y.C. Wang, Phosphorus recovery from biogas fermentation liquid by Ca-Mg loaded biochar, J. Environ. Sci., 29 (2015) 106–114.
  5. L. Qiu, P. Zheng, M. Zhang, X. Yu, G. Abbas, Phosphorus removal using ferric–calcium complex as precipitant: Parameters optimization and phosphorus-recycling potential, Chem. Eng. J., 268 (2015) 230–235.
  6. Z.L. Ye, S.H. Chen, S.M. Wang, L.F. Lin, Y.J. Yan, Z.J. Zhang, J.S. Chen, Phosphorus recovery from synthetic swine wastewater by chemical precipitation using response surface methodology, J. Hazard. Mater., 176 (2010) 1083–1088.
  7. J.S. An, Y.J. Back, K.C. Kim, R. Cha, T.Y. Jeong, H.K. Chung, Optimization for the removal of orthophosphate from aqueous solution by chemical precipitation using ferrous chloride, Environ. Technol., 35 (2014) 1668–1675.
  8. A. Oehmen, P.C. Lemos, G. Carvalho, Z. Yuan, J. Keller, L.L. Blackall, M.A. Reis, Advances in enhanced biological phosphorus removal: from micro to macro scale, Water Res., 41 (2007) 2271–2300.
  9. M. Li, Y. Wu, Z. Yu, G. Sheng, H. Yu, Enhanced nitrogen and phosphorus removal from eutrophic lake water by Ipomoea aquatica with low-energy ion implantation, Water Res., 43 (2009) 1247–12456.
  10. C. dos Santos, A. Ribeiro, M.R. Teixeira, Phosphorus recovery from waters using nanofiltration, Desal. Water Treat., 55 (2015) 1308–1315.
  11. J. Altmann, A. Sperlich, M. Jekel, Integrating organic micro-pollutant removal into tertiary filtration: Combining PAC adsorption with advanced phosphorus removal, Water Res., 84 (2015) 58–65.
  12. J. Shi, X. Lu, R. Yu, W. Zhu, Nutrient removal and phosphorus recovery performances of a novel anaerobic-anoxic/nitrifying/induced crystallization process, Bioresour. Technol., 121 (2012) 183–189.
  13. M. Hanhoun, L. Montastruc, C. Azzaro-Pantel, B. Biscans, M. Frèche, L. Pibouleau, Simultaneous determination of nucleation and crystal growth kinetics of struvite using a thermodynamic modeling approach, Chem. Eng. J., 215–216 (2013) 903–912.
  14. Y. Shen, Z. Ye, X. Ye, J. Wu, S. Chen, Phosphorus recovery from swine wastewater by struvite precipitation: compositions and heavy metals in the precipitates, Desal. Water Treat., (2015) 1–9.
  15. K. Sangwal, Recent developments in understanding of the metastable zone width of different solute-solvent systems, J. Cryst. Growth, 318 (2011) 103–109.
  16. S.A. Kulkarni, S.S. Kadam, H. Meekes, A.I. Stankiewicz, J.H. Horst, Crystal nucleation kinetics from induction times and metastable zone widths, Cryst. Growth Des., 13 (2013) 2435–2440.
  17. S.S. Kadam, S.A. Kulkarni, R. Coloma Ribera, A.I. Stankiewicz, J.H. Horst, H.J.M. Kramer, A new view on the metastable zone width during cooling crystallization, Chem. Eng. Sci., 72 (2012) 10–19.
  18. D.C. Huang, W. Liu, S.K. Zhao, Y.Q. Shi, Z.X. Wang, Y.M. Sun, Quantitative design of seed load for solution cooling crystallization based on kinetic analysis, Chem. Eng. J., 156 (2010) 360–365.
  19. J. Nývlt, The effect of the cooling method on the crystal size distribution of the product from a batch crystallizer, Coll. Czech. Chem. C., 39 (1974) 3463–3472.
  20. J. Nývlt, O. Sohnel, M. Matuchova, M. Broul, In: The Kinetics of Industrial Crystallization, Academia, Prague, 1985.
  21. H. Li, Z. Guo, B. Xue, Y. Zhang, W. Huang, Collagen modulating crystallization of apatite in a biomimetic gel system, Ceram. Int., 37 (2011) 2305–2310.
  22. N. Bellier, F. Chazarenc, Y. Comeau, Phosphorus removal from wastewater by mineral apatite, Water Res., 40 (2006) 2965–2971.
  23. Y. Song, P.G. Weidler, U. Berg, R. Nuesch, D. Donnert, Calcite- seeded crystallization of calcium phosphate for phosphorus recovery, Chemosphere, 63 (2006) 236–243.
  24. E.H. Kim, H.K. Hwang, S.B. Yim, Phosphorus removal characteristics in hydroxyapatite crystallization using converter slag, J. Environ. Sci. Heal. A., 41 (2006) 2531–2545.
  25. P. Battistoni, P. Pavan, F. Cecchi, J. Mata-Alvarez, Phosphate removal in real anaerobic supernatants: Modelling and performance of a fluidized bed reactor, Water Sci. Technol., 38 (1998) 275–283.
  26. M.M. Seckler, O.S.L. Bruinsma, G.M. VanRosmalen, Calcium phosphate precipitation in a fluidized bed in relation to process conditions: A black box approach, Water Res., 30 (1996) 1677–1685.
  27. M.T. Fulmer, I.C. Ison, C.R. Hankermayer, B.R. Constantz, J. Ross, Measurements of the solubilities and dissolution rates of several hydroxyapatites, Biomaterials, 23 (2002) 751–755.
  28. H.B. Pan, B.W. Darvell, Solubility of hydroxyapatite by solid titration at pH 3-4, Arch. Oral. Biol., 52 (2007) 618–624.
  29. L.F.E. Nathalie, O. Louisnard, S. Jacques, Effect of ultrasound on the induction time and the metastable zone widths of potassium sulphate, Chem. Eng. J., 86 (2002) 233–241.
  30. K.J. Kim, A. Mersmann, Estimation of metastable zone width in different nucleation processes, Chem. Eng. Sci., 56 (2001) 2315–2324.
  31. J. Ulrich, C. Strege, Some aspects of the importance of metastable zone width and nucleation in industrial crystallizers, J. Cryst. Growth, (2002) 237–239.
  32. X. Zhang, Z. Yang, J. Chai, J. Xu, L. Zhang, G. Qian, X. Zhou, Nucleation kinetics of lovastatin in different solvents from metastable zone widths, Chem. Eng. Sci., 133 (2015) 62–69.
  33. L. Dang, H. Wei, Z. Zhu, J. Wang, The influence of impurities on phosphoric acid hemihydrate crystallization, J. Cryst. Growth, 307 (2007) 104–111.
  34. J. Nývlt, R. Rychlý, J. Gottfried, J. Wurzelová, Metastable zonewidth of some aqueous solutions, J. Cryst. Growth, 6 (1970) 151–162.
  35. Z.K. Nagy, M. Fujiwara, X.Y. Woo, R.D. Braatz, Determination of the kinetic parameters for the crystallization of paracetamol from water using metastable zone width experiments, Ind. Eng. Chem. Res., 47 (2008) 1245–1252.
  36. N. Kubota, A new interpretation of metastable zone widths measured for unseeded solutions, J. Cryst. Growth, 310 (2008) 629–634.
  37. M. Ashok, N. Meenakshi Sundaram, S. Narayana Kalkura, Crystallization of hydroxyapatite at physiological temperature, Mater. Lett., 57 (2003) 2066–2070.
  38. L.P. Dang, Z.Z. Wang, P.B. Liu, Measurement of the metastable zone width of phosphoric acid hemihydrate in the presence of impurity ions, J. Chem. Eng. Data., 52 (2007) 1545–1547.
  39. Y. Ma, J. Zhu, H. Ren, K. Chen, Effects of impurity ions on solubility and metastable zone width of phosphoric acid, Cryst. Res. Technol., 44 (2009) 1313–1318.
  40. K. Sangwal, On the effect of impurities on the metastable zone width of phosphoric acid, J. Cryst. Growth, 321(2010) 3316– 3325.
  41. K. Sangwal, E. Mielniczek-Brzóska, Effect of impurities on metastable zone width for the growth of ammonium oxalate monohydrate crystals from aqueous solutions, J. Cryst. Growth, 267 (2004) 662–675.