References
- M. Ahmaruzzaman, Adsorption of phenolic compounds on low-cost adsorbents: a review, Adv. Colloid Interface Sci., 143 (2008) 48–67.
- C. Namasivayam, D. Kavitha, Adsorptive removal of 2-chlorophenol by low-cost coir pith carbon, J. Hazard. Mater., 98 (2003) 257–274.
- L.F.G. Martins, M.C.B. Parreira, J.P. Prates Ramalho, P. Morgado, E.J.M. Filipe, Prediction of diffusion coefficients of chlorophenols in water by computer simulation, Fluid Phase Equilib., 396 (2015) 9–19.
- G. Mihoc, R. Ianos, C. Pacurariu, Adsorption of phenol and p-chlorophenol from aqueous solutions by magnetic nanopowder, Water Sci. Technol., 69 (2014) 385–391.
- K. Kusmierek, A. Swiatkowski, The influence of different agitation techniques on the adsorption kinetics of 4-chlorophenol on granular activated carbon, React. Kinet. Mech. Cat., 116 (2015) 261–271.
- S. Guilane, O. Hamdaoui, Desorption of 4-chlorophenol from spent granular activated carbon in continuous flow ultrasonic reactor, Desal. Wat. Treat., 57 (2016) 12708–12716.
- A. Gholizadeh, M. Kermani, M. Gholami, M. Farzadkia, Kinetic and isotherm studies of adsorption and biosorption processes in the removal of phenolic compounds from aqueous solutions: comparative study, J. Environ. Health Sci. Eng., 11 (2013) 1–10.
- Ihsanullah, H.A. Asmaly, T.A. Saleh, T. Laoui, V.K. Gupta, M.A. Atieh, Enhanced adsorption of phenols from liquids by aluminum oxide/carbon nanotubes: comprehensive study from synthesis to surface properties, J. Mol. Liq., 206 (2015) 176–182.
- F. Delval, G. Crini, J. Vebrel, Removal of organic pollutants from aqueous solutions by adsorbents prepared from an agroalimentary by-product, Bioresour. Technol., 97 (2006) 2173–2181.
- S. Al-Asheh, F. Banat, L. Abu-Aitah, Adsorption of phenol using different types of activated bentonites, Sep. Purif. Technol., 33 (2003) 1–10.
- M.D. Markovic, B.P. Dojcinovic, B.M. Obradovic, J. Nesic, M.M. Natic, T.B. Tosti, M.M. Kuraica, D.D. Manojlovic, Degradation and detoxification of the 4-chlorophenol by non-thermal plasma-influence of homogeneous catalysts, Sep. Purif. Technol., 154 (2015) 246–254.
- B. Deka, K.G. Bhattacharyya, Using coal fly ash as a support for Mn(II), Co(II) and Ni(II) and utilizing the materials as novel oxidation catalysts for 4-chlorophenol mineralization, J. Environ. Manage., 150 (2015) 479–488.
- Z. Li, D. Suzuki, C. Zhang, S. Yang, J. Nan, N. Yoshida, A. Wang, A. Katayama, Anaerobic 4-chlorophenol mineralization in an enriched culture under iron-reducing conditions, J. Biosci. Bioeng., 118 (2014) 529–532.
- Q.-S. Liu, T. Zheng, P. Wang, Y.-J. Li, Regeneration of 4-chlorophenol exhausted GAC with a microwave assisted wet peroxide oxidation process, Separ. Sci. Technol., 49 (2014) 68–73.
- Y.Y. Berestovskaya, V.V. Ignatov, L.N. Markina, A.A. Kamenev, O.E. Makarov, Degradation of ortho-chlorophenol, para-chlorophenol, and 2,4-dichlorophenoxyacetic acid by the bacterial community of anaerobic sludge, Microbiol., 69 (2000) 397–400.
- J.W. Birkett, J.N. Lester, Endocrine Disrupters in Wastewater and Sludge Treatment Processes, IWA Publishing, London, 2003.
- Z. Zhengguo, F. Xiaoqin, Y. Xiao-Xia, A. Fu-Qiang, Z. Wen-Xia, G. Jian-Feng, H. Tuo-Ping, W. Chin-Chuan, Effective adsorption of phenols using nitrogen-containing porous activated carbon prepared from sunflower plates, Korean J. Chem. Eng., 32 (2015) 1564–1569.
- L. De-Chang, D. Jin-Wen, Q. Ting-Ting, Z. Shun, J. Hong, Preparation of high adsorption performance and stable biochar granules by FeCl3-catalyzed fast pyrolysis; RSC Advances, 6 (2016) 12226–12234.
- N.S. Kumar, M. Suguna, M.V. Subbaiah, A.S. Reddy, N.P. Kumar, A. Krishnaiah, Adsorption of phenolic compounds from aqueous solutions onto chitosan-coated perlite beads as biosorbent, Ind. Eng. Chem. Res., 49 (2010) 9238–9247.
- A. Dabrowski, P. Podkoscielny, Z. Hubicki, M. Barczak, Adsorption of phenolic compounds by activated carbon – a critical review, Chemosphere, 58 (2005) 1049–1070.
- M. Spiridon, O.R. Hauta, M.S. Secula, S. Petrescu, Preparation and characterization of some porous composite materials for water vapor adsorption, Rev. Chim. (Bucuresti), 63 (2012) 711–714.
- M.J. Ahmed, S.K. Theydan, Adsorption of p-chlorophenol onto microporous activated carbon from Albizia lebbeck seed pods by one-step microwave assisted activation, J. Anal. Appl. Pyrolysis, 100 (2013) 253–260.
- K.M. Park, H.G. Nam, K.B. Lee, S. Mun, Adsorption behaviors of sugars and sulfuric acid on activated porous carbon, J. Ind. Eng. Chem., 34 (2016) 21–26.
- K. Singh, B. Chandra, Adsorption behaviours of phenols onto high specific area activated carbon derived from Trapa bispinosa, Indian J. Chem. Technol., 22 (2015) 11–19.
- Z. Luo, M. Gao, S. Yang, Q. Yang, Adsorption of phenols on reduced-charge montmorillonites modified by bispyridinium dibromides: mechanism, kinetics and thermodynamics studies, Colloids Surf., A, 482 (2015) 222–230.
- L.-C. Zhou, X.-G. Meng, J.-W. Fu, Y.-C. Yang, P. Yang, C. Mi, Highly efficient adsorption of chlorophenols onto chemically modified chitosan, Appl. Surf. Sci., 292 (2014) 735–741.
- F. Stoeckli, Dubinins theory and its contribution to adsorption science, Russ. Chem. Bull., 12 (2001) 2265–2272.
- K.S.W. Sing, D.H. Everett, R.A.W. Paul, L. Moscou, R.A. Pierotti, J. Rouquerol, T. Domaniewska, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity, Pure Appl. Chem., 57 (1985) 603–619.
- H.P. Boehm, E. Diehl, W. Heck, R. Sappok, Surface oxides of carbon, Angew. Chem., Int. Ed., 3 (1964) 669–677.
- J. Rivera-Utrilla, M. Sanchez-Polo, Ozonation of 1,3,6-naphthalenetrisulphonic acid catalysed by activated carbon in aqueous phase, Appl. Catal. B, 39 (2002) 319–329.
- Q.-S. Liu, T. Zheng, P. Wang, J.P. Jiang, N. Li, Adsorption isotherm, kinetic and mechanism studies of some substituted phenols on activated carbon fibers, Chem. Eng. J., 157 (2010) 348–356.
- B.H. Hameed, I.A.W. Tan, A.L. Ahmad, Adsorption isotherm, kinetic modeling and mechanism of 2,4,6-trichlorophenol on coconut husk-based activated carbon, Chem. Eng. J., 144 (2008) 235–244.
- S. Lagergren, B.K. Svenska, Zur theorie der sogenannten adsorption geloester stoffe, Vet.-A Handlingar, 24 (1898) 1–39.
- Y.S. Ho, G. McKay, A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents, Proc. Saf. Environ. Protect., 76 (1998) 332–340.
- W.J. Weber, J.C. Morris, Kinetics of adsorption on carbon from solution, J. Sanity Eng. Div. Am. Soc. Civil Eng., 89 (1963) 31–59.
- I. Langmuir, The constitution and fundamental properties of solids and liquids, J. Am. Chem. Soc., 38 (1916) 2221–2295.
- H.M.F. Freundlich, Uber die adsorption in losungen, Z. Phys. Chem., 57 (1906) 385–470.
- O. Redlich, D.L. Peterson, A useful adsorption isotherm, J. Phys. Chem., 63 (1959) 1024–1026.
- O. Hamdaoui, E. Naffrechoux, Modeling of adsorption isotherms of phenol and chlorophenols onto granular activated carbon Part II. Models with more than two parameters, J. Hazard. Mater., 147 (2007) 401–411.
- C.J. Radke, J.M. Prausnitz, Adsorption of organic solutions from dilute aqueous solution on activated carbon, Ind. Eng. Chem. Fundam., 11 (1972) 445–451.
- D. Schimmel, K.C. Fagnani, J.B. Oliveira dos Santos, M.A.S.D. Barros, E. Antonio da Silva, Adsorption of turquoise blue QG reactive bye commercial activated carbon in batch reactor: kinetic and equilibrium studies, Braz. J. Chem. Eng., 27 (2010) 289–298.
- R. Ocampo-Pérez, M.M. Abdel Daiem, J. Rivera-Utrilla, J.D. Méndez-Díaz, M. Sánchez-Polo, Modeling adsorption rate of organic micropollutants present in landfill leachates onto granular activated carbon, J. Colloid Interface Sci., 385 (2012) 174–182.
- R. Sips, On the structure of a catalyst surface, J. Phys. Chem., 16 (1948) 490–495.
- M.S. Secula, I. Cretescu, M. Diaconu, Adsorption of acid dye Eriochrome Black T from aqueous solutions onto activated carbon. Kinetic and equilibrium studies, J. Environ. Prot. Ecol., 15 (2014) 1583–1593.
- M. Kilic, E. Apaydin-Varol, A.E. Putun, Adsorptive removal of phenol from aqueous solutions on activated carbon prepared from tobacco residues: equilibrium, kinetics and thermodynamics, J. Hazard. Mater., 189 (2011) 397–403.
- K.V. Kumar, K. Porkodi, Relation between some two- and three-parameter isotherm models for the sorption of methylene blue onto lemon peel, J. Hazard. Mater., 138 (2006) 633–635.
- M.S. Secula, B. Cagnon, T. Ferreira de Oliveira, O. Chedeville, H. Fauduet, Removal of acid dye from aqueous solutions by electrocoagulation/GAC adsorption coupling: kinetics and electrical operating costs, J. Taiwan. Inst. Chem. Eng., 43 (2012) 767–775.
- D.A. Blanco-Martínez, L. Giraldo, J.C. Moreno-Piraján, Effect of the pH in the adsorption and in the immersion enthalpy of monohydroxylated phenols from aqueous solutions on activated carbons, J. Hazard. Mater., 169 (2009) 291–296.
- K. Laszlo, P. Podkoscielny, A. Dabrowski, Heterogeneity of activated carbons with different surface chemistry in adsorption of phenol from aqueous solutions, Appl. Surf. Sci., 252 (2006) 5752–5762.
- C. Valderrama, X. Gamisans, X. de las Heras, A. Farran, J.L. Cortina, Sorption kinetics of polycyclic aromatic hydrocarbons removal using granular activated carbon: intraparticle diffusion coefficients, J. Hazard. Mater., 157 (2008) 386–396.
- F.-C. Wu, R.-L. Tseng, S.-C. Huang, R.-S. Juang, Characteristics of pseudo-second-order kinetic model for liquid-phase adsorption: a mini-review, Chem. Eng. J., 151 (2009) 1–9.
- H.B. Senturk, D. Ozdes, A. Gundogdu, C. Duran, M. Soylak, Removal of phenol from aqueous solutions by adsorption onto organomodified Tirebolu bentonite: equilibrium, kinetic and thermodynamic study, J. Hazard. Mater., 172 (2009) 353–362.
- J.R. Kim, S.G. Huling, E. Kan, Effects of temperature on adsorption and oxidative degradation of bisphenol A in an acid-treated iron-amended granular activated carbon, Chem. Eng. J., 262 (2015) 1260–1267.
- L. Zhang, B. Zhang, T. Wu, D. Sun, Y. Li, Adsorption behavior and mechanism of chlorophenols onto organoclays in aqueous solution, Colloids Surf. A, 484 (2015) 118–129.
- P. Li, A.K. SenGupta, Entropy-driven selective ion exchange for aromatic ions and the role of cosolvents, Colloids Surf. A: Physicochem. Eng. Asp., 191 (2001) 123–132.