References

  1. S. Davydova, Heavy metals as main pollutants of the next century, Crit. Rev. Anal. Chem., 28 (1998) 377–381.
  2. P. Wong, K. Lam, C. So, Removal and recovery of Cu (II) from industrial effluent by immobilized cells of Pseudomonas putida II-11, Appl. Microbiol. Biotechnol., 39 (1993) 127–131.
  3. S. Amritphale, M. Prasad, S. Saxena, N. Chandra, Adsorption behavior of lead ions on pyrophyllite surface, Main Group Metal. Chem., 22 (1999) 557–566.
  4. B. Prasad, U. Pandey, Separation and preconcentration of copper and cadmium ions from multielemental solutions using Nostoc muscorum-based biosorbents, World J. Microb. Biot., 16 (2000) 819–827.
  5. M. Vaca Mier, R. López Callejas, R. Gehr, B.E. Jiménez Cisneros, P.J. Alvarez, Heavy metal removal with Mexican clinoptilolite: multi-component ionic exchange, Water Res., 35 (2001) 373–378.
  6. Z. Reddad, C. Gerente, Y. Andres, P. Le Cloirec, Adsorption of several metal ions onto a low-cost biosorbent: kinetic and equilibrium studies, Environ. Sci. Technol., 36 (2002) 2067–2073.
  7. V. Sergeev, T. Shimko, M. Kuleshova, N. Maximovich, Groundwater protection against pollution by heavy metals at waste disposal sites, Wat. Sci. Tech., 34 (1996) 383–387.
  8. X. Cao, L. Ma, B. Gao, W. Harris, Dairy-manure derived biochar effectively sorbs lead and atrazine, Environ. Sci. Technol., 43 (2009) 3285–3291.
  9. M. Salim, B. Shaikh, Distribution and availability of zinc in soil fractions to wheat on some alkaline calcareous soils, Zeitschrift für Pflanzenernährung und Bodenkunde, 151 (1988) 385–389.
  10. K. Kadirvelu, K. Thamaraiselvi, C. Namasivayam, Adsorption of nickel (II) from aqueous solution onto activated carbon prepared from coirpith, Sep. Purif. Technol., 24 (2001) 497–505.
  11. Z. Liu, F.-S. Zhang, Removal of lead from water using biochars prepared from hydrothermal liquefaction of biomass, J. Hazard. Mater., 167 (2009) 933–939.
  12. A. Shahat, M.R. Awual, M.A. Khaleque, M.Z. Alam, M. Naushad, A.M.S. Chowdhury, Large-pore diameter nano-adsorbent and its application for rapid lead(II) detection and removal from aqueous media, Chem. Eng. J., 273 (2015) 286–295.
  13. L. Lou, B. Wu, L. Wang, L. Luo, X. Xu, J. Hou, B. Xun, et al., Sorption and ecotoxicity of pentachlorophenol polluted sediment amended with rice-straw derived biochar, Bioresour. Technol., 102 (2011) 4036–4041.
  14. S. Tunali, A. Cabuk, T. Akar, Removal of lead and copper ions from aqueous solutions by bacterial strain isolated from soil, Chem. Eng. J., 115 (2006) 203–211.
  15. C. Karthika, N. Vennilamani, S. Pattabhi, M. Sekar, Utilization of sago waste as an adsorbent for the removal of Pb (II) from aqueous solution: kinetic and isotherm studies, Intern. J. Eng. Sci. Tech., 2 (2010) 1867–1879.
  16. S. Al-Asheh, F. Banat, R. Al-Omari, Z. Duvnjak, Predictions of binary sorption isotherms for the sorption of heavy metals by pine bark using single isotherm data, Chemosphere, 41 (2000) 659–665.
  17. A.A. Atia, A.M. Donia, A.M. Yousif, Removal of some hazardous heavy metals from aqueous solution using magnetic chelating resin with iminodiacetate functionality, Sep. Purif. Technol., 61 (2008) 348–357.
  18. S. Mahdavi, M. Jalali, A. Afkhami, Heavy metals removal from aqueous solutions using TiO2, MgO, and Al2O3 nanoparticles, Chem. Eng. Comm., 200 (2013) 448–470.
  19. N. Rahman, U. Haseen, Equilibrium modeling, kinetic, and thermodynamic studies on adsorption of Pb(II) by a hybrid inorganic–organic material: polyacrylamide zirconium(IV) iodate, Ind. Eng. Chem. Res., 53 (2014) 8198–8207.
  20. N. Khalid, S. Ahmad, S.N. Kiani, J. Ahmed, Removal of lead from aqueous solutions using rice husk, Sep. Sci. Technol., 33 (1998) 2349–2362.
  21. Z.A. Al-Othman, R. Ali, M. Naushad, Hexavalent chromium removal from aqueous medium by activated carbon prepared from peanut shell: Adsorption kinetics, equilibrium and thermodynamic studies, Chem. Eng. J., 184 (2012) 238–247.
  22. J.A. Fernández-López, J.M. Angosto, M.D. Avilés, Biosorption of hexavalent chromium from aqueous medium with opuntia biomass, Scientific World J., 2014 (2014) 1–8. (http://dx.doi. org/10.1155/2014/670249.
  23. M.F. Sawalha, J.R. Peralta-Videa, B. Sanchez-Salcido, J.L. Gardea-Torresdey, Sorption of hazardous metals from single and multi-element solutions by saltbush biomass in batch and continuous mode: interference of calcium and magnesium in batch mode, J. Environ. Manage., 90 (2009) 1213–1218.
  24. A. Demirbas, G. Arin, An overview of biomass pyrolysis, Energy Sources, 24 (2002) 471–482.
  25. L. Van Zwieten, S. Kimber, S. Morris, K. Chan, A. Downie, J. Rust, S. Joseph, A. Cowie, Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility, Plant Soil, 327 (2010) 235–246.
  26. J.E. Amonette, S. Joseph, Characteristics of biochar: microchemical properties, In: J. Lehmann, S. Joseph (Eds.), Biochar for environmental management: science and technology, Earthscan, London (2009) pp. 33–52.
  27. K. Hammes, R.J. Smernik, J.O. Skjemstad, A. Herzog, U.F. Vogt, M.W. Schmidt, Synthesis and characterisation of laboratory-charred grass straw Oryza sativa and chestnut wood Castanea sativa as reference materials for black carbon quantification, Org. Geochem., 37 (2006) 1629–1633.
  28. Y. Guo, D.A. Rockstraw, Activated carbons prepared from rice hull by one-step phosphoric acid activation, Microporous Mesoporous Mater., 100 (2007) 12–19.
  29. K.B. Cantrell, P.G. Hunt, M. Uchimiya, J.M. Novak, K.S. Ro, Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar, Bioresour. Technol., 107 (2012) 419–428.
  30. M. Uchimiya, L.H. Wartelle, K.T. Klasson, C.A. Fortier, I.M. Lima, Influence of pyrolysis temperature on biochar property and function as a heavy metal sorbent in soil, J. Agric. Food Chem., 59 (2011) 2501–2510.
  31. L. Beesley, E. Moreno-Jiménez, J.L. Gomez-Eyles, E. Harris, B. Robinson, T. Sizmur, A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils, Environ. Poll., 159 (2011) 3269–3282.
  32. S. Solomon, Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the IPCC, Cambridge University Press (2007).
  33. H. Valdés, M. Sánchez-Polo, J. Rivera-Utrilla, C. Zaror, Effect of ozone treatment on surface properties of activated carbon, Langmuir, 18 (2002) 2111–2116.
  34. M. Ahmedna, W. Marshall, R. Rao, Production of granular activated carbons from select agricultural by-products and evaluation of their physical, chemical and adsorption properties, Bioresour. Technol., 71 (2000) 113–123.
  35. M. Naushad, M.R. Khan, Z.A. Al Othman, I. Al Sohaimi, F. Rodriguez-Reinoso, T.M. Turki, R. Ali, Removal of BrO3 − from drinking water samples using newly developed agricultural waste-based activated carbon and its determination by ultra-performance liquid chromatography-mass spectrometry, Environ. Sci. Poll. Res., 22 (2015) 15853–15865.
  36. F. Pagnanelli, S. Mainelli, F. Vegliò, L. Toro, Heavy metal removal by olive pomace: biosorbent characterisation and equilibrium modelling, Chem. Eng. Sci., 58 (2003) 4709–4717.
  37. A. Enders, K. Hanley, T. Whitman, S. Joseph, J. Lehmann, Characterization of biochars to evaluate recalcitrance and agronomic performance, Bioresour. Technol., 114 (2012) 644–653.
  38. C.L. Khodadad, A.R. Zimmerman, S.J. Green, S. Uthandi, J.S. Foster, Taxa-specific changes in soil microbial community composition induced by pyrogenic carbon amendments, Soil Biol. Biochem., 43 (2011) 385–392.
  39. A. Downie, A. Crosky, P. Munroe, Physical properties of biochar, In: J. Lehmann, S. Joseph (Eds.), Biochar for environmental management: science and technology, Earthscan, London (2009), pp. 13–32.
  40. X. Xu, X. Cao, L. Zhao, H. Wang, H. Yu, B. Gao, Removal of Cu, Zn, and Cd from aqueous solutions by the dairy manure-derived biochar, Environ. Sci. Poll. Res., 20 (2013) 358–368.
  41. T.K. Naiya, A.K. Bhattacharya, S. Mandal, S.K. Das, The sorption of lead (II) ions on rice husk ash, J. Hazard. Mater., 163 (2009) 1254–1264.
  42. K. Sun, M. Keiluweit, M. Kleber, Z. Pan, B. Xing, Sorption of fluorinated herbicides to plant biomass-derived biochars as a function of molecular structure, Bioresour. Tech., 102 (2011) 9897–9903.
  43. K. Sreejalekshmi, K.A. Krishnan, T. Anirudhan, Adsorption of Pb (II) and Pb (II)-citric acid on sawdust activated carbon: kinetic and equilibrium isotherm studies, J. Hazard. Mater., 161 (2009) 1506–1513.
  44. J.S. Al-Jariri, F. Khalili, Adsorption of Zn (II), Pb (II), Cr (III) and Mn (II) from water by Jordanian bentonite, Desal. Water Treat., 21 (2010) 308–322.
  45. D. Kołodyńska, R. Wnętrzak, J.J. Leahy, M.H.B. Hayes, W. Kwapiński, Z. Hubicki, Kinetic and adsorptive characterization of biochar in metal ions removal, Chem. Eng. J., 197 (2012) 295–305.
  46. X. Chen, G. Chen, L. Chen, Y. Chen, J. Lehmann, M.B. McBride, A.G. Hay, Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution, Bioresour. Technol., 102 (2011) 8877–8884.
  47. M. Rafatullah, O. Sulaiman, R. Hashim, A. Ahmad, Adsorption of copper (II), chromium (III), nickel (II) and lead (II) ions from aqueous solutions by meranti sawdust, J. Hazard. Mater., 170 (2009) 969–977.
  48. D. Mohan, K.P. Singh, V.K. Singh, Removal of hexavalent chromium from aqueous solution using low-cost activated carbons derived from agricultural waste materials and activated carbon fabric cloth, Ind. Eng. Chem. Res., 44 (2005) 1027–1042.
  49. I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc., 40 (1918) 1361–1403.
  50. H. Freundlich, Over the adsorption in solution, J. Phys. Chem., 57 (1906) 1100–1107.
  51. A. Mittal, J. Mittal, A. Malviya, V. Gupta, Adsorptive removal of hazardous anionic dye “Congo red” from wastewater using waste materials and recovery by desorption, J. Colloid Interf. Sci., 340 (2009) 16–26.
  52. P. Fu, S. Hu, J. Xiang, L. Sun, P. Li, J. Zhang, C. Zheng, Pyrolysis of maize stalk on the characterization of chars formed under different devolatilization conditions, Energy Fuels, 23 (2009) 4605–4611.
  53. A. Swiatkowski, M. Pakula, S. Biniak, M. Walczyk, Influence of the surface chemistry of modified activated carbon on its electrochemical behaviour in the presence of lead (II) ions, Carbon, 42 (2004) 3057–3069.