References
- S. Davydova, Heavy metals as main pollutants of the next century,
Crit. Rev. Anal. Chem., 28 (1998) 377–381.
- P. Wong, K. Lam, C. So, Removal and recovery of Cu (II) from
industrial effluent by immobilized cells of Pseudomonas putida II-11, Appl. Microbiol. Biotechnol., 39 (1993) 127–131.
- S. Amritphale, M. Prasad, S. Saxena, N. Chandra, Adsorption
behavior of lead ions on pyrophyllite surface, Main Group
Metal. Chem., 22 (1999) 557–566.
- B. Prasad, U. Pandey, Separation and preconcentration of copper
and cadmium ions from multielemental solutions using
Nostoc muscorum-based biosorbents, World J. Microb. Biot., 16
(2000) 819–827.
- M. Vaca Mier, R. López Callejas, R. Gehr, B.E. Jiménez Cisneros,
P.J. Alvarez, Heavy metal removal with Mexican clinoptilolite:
multi-component ionic exchange, Water Res., 35 (2001) 373–378.
- Z. Reddad, C. Gerente, Y. Andres, P. Le Cloirec, Adsorption of
several metal ions onto a low-cost biosorbent: kinetic and equilibrium
studies, Environ. Sci. Technol., 36 (2002) 2067–2073.
- V. Sergeev, T. Shimko, M. Kuleshova, N. Maximovich, Groundwater
protection against pollution by heavy metals at waste disposal
sites, Wat. Sci. Tech., 34 (1996) 383–387.
- X. Cao, L. Ma, B. Gao, W. Harris, Dairy-manure derived biochar
effectively sorbs lead and atrazine, Environ. Sci. Technol., 43
(2009) 3285–3291.
- M. Salim, B. Shaikh, Distribution and availability of zinc in soil
fractions to wheat on some alkaline calcareous soils, Zeitschrift
für Pflanzenernährung und Bodenkunde, 151 (1988) 385–389.
- K. Kadirvelu, K. Thamaraiselvi, C. Namasivayam, Adsorption
of nickel (II) from aqueous solution onto activated carbon prepared
from coirpith, Sep. Purif. Technol., 24 (2001) 497–505.
- Z. Liu, F.-S. Zhang, Removal of lead from water using biochars
prepared from hydrothermal liquefaction of biomass, J. Hazard.
Mater., 167 (2009) 933–939.
- A. Shahat, M.R. Awual, M.A. Khaleque, M.Z. Alam, M. Naushad,
A.M.S. Chowdhury, Large-pore diameter nano-adsorbent and
its application for rapid lead(II) detection and removal from
aqueous media, Chem. Eng. J., 273 (2015) 286–295.
- L. Lou, B. Wu, L. Wang, L. Luo, X. Xu, J. Hou, B. Xun, et al.,
Sorption and ecotoxicity of pentachlorophenol polluted sediment
amended with rice-straw derived biochar, Bioresour.
Technol., 102 (2011) 4036–4041.
- S. Tunali, A. Cabuk, T. Akar, Removal of lead and copper ions
from aqueous solutions by bacterial strain isolated from soil,
Chem. Eng. J., 115 (2006) 203–211.
- C. Karthika, N. Vennilamani, S. Pattabhi, M. Sekar, Utilization
of sago waste as an adsorbent for the removal of Pb (II) from
aqueous solution: kinetic and isotherm studies, Intern. J. Eng.
Sci. Tech., 2 (2010) 1867–1879.
- S. Al-Asheh, F. Banat, R. Al-Omari, Z. Duvnjak, Predictions of
binary sorption isotherms for the sorption of heavy metals by pine
bark using single isotherm data, Chemosphere, 41 (2000) 659–665.
- A.A. Atia, A.M. Donia, A.M. Yousif, Removal of some hazardous
heavy metals from aqueous solution using magnetic chelating
resin with iminodiacetate functionality, Sep. Purif. Technol.,
61 (2008) 348–357.
- S. Mahdavi, M. Jalali, A. Afkhami, Heavy metals removal from
aqueous solutions using TiO2, MgO, and Al2O3 nanoparticles,
Chem. Eng. Comm., 200 (2013) 448–470.
- N. Rahman, U. Haseen, Equilibrium modeling, kinetic, and
thermodynamic studies on adsorption of Pb(II) by a hybrid
inorganic–organic material: polyacrylamide zirconium(IV)
iodate, Ind. Eng. Chem. Res., 53 (2014) 8198–8207.
- N. Khalid, S. Ahmad, S.N. Kiani, J. Ahmed, Removal of lead
from aqueous solutions using rice husk, Sep. Sci. Technol., 33
(1998) 2349–2362.
- Z.A. Al-Othman, R. Ali, M. Naushad, Hexavalent chromium
removal from aqueous medium by activated carbon prepared
from peanut shell: Adsorption kinetics, equilibrium and thermodynamic
studies, Chem. Eng. J., 184 (2012) 238–247.
- J.A. Fernández-López, J.M. Angosto, M.D. Avilés, Biosorption
of hexavalent chromium from aqueous medium with opuntia
biomass, Scientific World J., 2014 (2014) 1–8. (http://dx.doi.
org/10.1155/2014/670249.
- M.F. Sawalha, J.R. Peralta-Videa, B. Sanchez-Salcido,
J.L. Gardea-Torresdey, Sorption of hazardous metals from
single and multi-element solutions by saltbush biomass in batch
and continuous mode: interference of calcium and magnesium
in batch mode, J. Environ. Manage., 90 (2009) 1213–1218.
- A. Demirbas, G. Arin, An overview of biomass pyrolysis,
Energy Sources, 24 (2002) 471–482.
- L. Van Zwieten, S. Kimber, S. Morris, K. Chan, A. Downie, J.
Rust, S. Joseph, A. Cowie, Effects of biochar from slow pyrolysis
of papermill waste on agronomic performance and soil fertility,
Plant Soil, 327 (2010) 235–246.
- J.E. Amonette, S. Joseph, Characteristics of biochar: microchemical
properties, In: J. Lehmann, S. Joseph (Eds.), Biochar for environmental
management: science and technology, Earthscan, London
(2009) pp. 33–52.
- K. Hammes, R.J. Smernik, J.O. Skjemstad, A. Herzog, U.F. Vogt,
M.W. Schmidt, Synthesis and characterisation of laboratory-charred grass straw Oryza sativa and chestnut wood Castanea
sativa as reference materials for black carbon quantification,
Org. Geochem., 37 (2006) 1629–1633.
- Y. Guo, D.A. Rockstraw, Activated carbons prepared from
rice hull by one-step phosphoric acid activation, Microporous
Mesoporous Mater., 100 (2007) 12–19.
- K.B. Cantrell, P.G. Hunt, M. Uchimiya, J.M. Novak, K.S. Ro,
Impact of pyrolysis temperature and manure source on physicochemical
characteristics of biochar, Bioresour. Technol., 107
(2012) 419–428.
- M. Uchimiya, L.H. Wartelle, K.T. Klasson, C.A. Fortier, I.M.
Lima, Influence of pyrolysis temperature on biochar property
and function as a heavy metal sorbent in soil, J. Agric. Food
Chem., 59 (2011) 2501–2510.
- L. Beesley, E. Moreno-Jiménez, J.L. Gomez-Eyles, E. Harris, B.
Robinson, T. Sizmur, A review of biochars’ potential role in
the remediation, revegetation and restoration of contaminated
soils, Environ. Poll., 159 (2011) 3269–3282.
- S. Solomon, Climate change 2007: the physical science basis.
Contribution of working group I to the fourth assessment report of the
IPCC, Cambridge University Press (2007).
- H. Valdés, M. Sánchez-Polo, J. Rivera-Utrilla, C. Zaror, Effect
of ozone treatment on surface properties of activated carbon,
Langmuir, 18 (2002) 2111–2116.
- M. Ahmedna, W. Marshall, R. Rao, Production of granular activated
carbons from select agricultural by-products and evaluation
of their physical, chemical and adsorption properties,
Bioresour. Technol., 71 (2000) 113–123.
- M. Naushad, M.R. Khan, Z.A. Al Othman, I. Al Sohaimi, F.
Rodriguez-Reinoso, T.M. Turki, R. Ali, Removal of BrO3 −
from drinking water samples using newly developed agricultural
waste-based activated carbon and its determination by
ultra-performance liquid chromatography-mass spectrometry,
Environ. Sci. Poll. Res., 22 (2015) 15853–15865.
- F. Pagnanelli, S. Mainelli, F. Vegliò, L. Toro, Heavy metal
removal by olive pomace: biosorbent characterisation and equilibrium
modelling, Chem. Eng. Sci., 58 (2003) 4709–4717.
- A. Enders, K. Hanley, T. Whitman, S. Joseph, J. Lehmann, Characterization
of biochars to evaluate recalcitrance and agronomic
performance, Bioresour. Technol., 114 (2012) 644–653.
- C.L. Khodadad, A.R. Zimmerman, S.J. Green, S. Uthandi, J.S.
Foster, Taxa-specific changes in soil microbial community composition
induced by pyrogenic carbon amendments, Soil Biol.
Biochem., 43 (2011) 385–392.
- A. Downie, A. Crosky, P. Munroe, Physical properties of biochar,
In: J. Lehmann, S. Joseph (Eds.), Biochar for environmental management:
science and technology, Earthscan, London (2009), pp. 13–32.
- X. Xu, X. Cao, L. Zhao, H. Wang, H. Yu, B. Gao, Removal of Cu,
Zn, and Cd from aqueous solutions by the dairy manure-derived
biochar, Environ. Sci. Poll. Res., 20 (2013) 358–368.
- T.K. Naiya, A.K. Bhattacharya, S. Mandal, S.K. Das, The sorption
of lead (II) ions on rice husk ash, J. Hazard. Mater., 163
(2009) 1254–1264.
- K. Sun, M. Keiluweit, M. Kleber, Z. Pan, B. Xing, Sorption of
fluorinated herbicides to plant biomass-derived biochars as a
function of molecular structure, Bioresour. Tech., 102 (2011)
9897–9903.
- K. Sreejalekshmi, K.A. Krishnan, T. Anirudhan, Adsorption
of Pb (II) and Pb (II)-citric acid on sawdust activated carbon:
kinetic and equilibrium isotherm studies, J. Hazard. Mater., 161
(2009) 1506–1513.
- J.S. Al-Jariri, F. Khalili, Adsorption of Zn (II), Pb (II), Cr (III)
and Mn (II) from water by Jordanian bentonite, Desal. Water
Treat., 21 (2010) 308–322.
- D. Kołodyńska, R. Wnętrzak, J.J. Leahy, M.H.B. Hayes,
W. Kwapiński, Z. Hubicki, Kinetic and adsorptive characterization
of biochar in metal ions removal, Chem. Eng. J., 197 (2012)
295–305.
- X. Chen, G. Chen, L. Chen, Y. Chen, J. Lehmann, M.B. McBride,
A.G. Hay, Adsorption of copper and zinc by biochars produced
from pyrolysis of hardwood and corn straw in aqueous solution,
Bioresour. Technol., 102 (2011) 8877–8884.
- M. Rafatullah, O. Sulaiman, R. Hashim, A. Ahmad, Adsorption
of copper (II), chromium (III), nickel (II) and lead (II) ions from
aqueous solutions by meranti sawdust, J. Hazard. Mater., 170
(2009) 969–977.
- D. Mohan, K.P. Singh, V.K. Singh, Removal of hexavalent chromium
from aqueous solution using low-cost activated carbons
derived from agricultural waste materials and activated carbon
fabric cloth, Ind. Eng. Chem. Res., 44 (2005) 1027–1042.
- I. Langmuir, The adsorption of gases on plane surfaces of glass,
mica and platinum, J. Am. Chem. Soc., 40 (1918) 1361–1403.
- H. Freundlich, Over the adsorption in solution, J. Phys. Chem.,
57 (1906) 1100–1107.
- A. Mittal, J. Mittal, A. Malviya, V. Gupta, Adsorptive removal
of hazardous anionic dye “Congo red” from wastewater using
waste materials and recovery by desorption, J. Colloid Interf.
Sci., 340 (2009) 16–26.
- P. Fu, S. Hu, J. Xiang, L. Sun, P. Li, J. Zhang, C. Zheng, Pyrolysis
of maize stalk on the characterization of chars formed under
different devolatilization conditions, Energy Fuels, 23 (2009)
4605–4611.
- A. Swiatkowski, M. Pakula, S. Biniak, M. Walczyk, Influence of
the surface chemistry of modified activated carbon on its electrochemical
behaviour in the presence of lead (II) ions, Carbon,
42 (2004) 3057–3069.