References

  1. E. Merian, Ed., Metals and Their Compounds in the Environment, VCH, Weinheim, Germany, 1991.
  2. E.G. Farmaki, N.S. Thomaidis, Current status of the metal pollution of the environment of Greece - a review, Global NEST J., 10 (2008) 366–375.
  3. Z. Kowalakshi, Treatment of chromic tannery wastes, J. Hazard. Mater., 37 (1994) 137–144.
  4. G. Crini, Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment, Prog. Polym. Sci., 30 (2005) 38–70.
  5. R. Mehra, M. Juneja, Adverse health effects in workers exposed to trace/toxic metals, Indian J. Biochem. Biophys., 40 (2003) 131–135.
  6. US Department of Health and Human Services, Profile for Chromium, Public Health Service Agency for Toxic substances and Diseases, Washington, DC, 1991.
  7. S.P.B. Kamaludeen, K.R. Arunkumar, S. Avudainayagam, K. Ramasamy, Bioremediation of chromium contaminated environments, Indian J. Exp. Biol., 41 (2003) 972–985.
  8. E. Parameswari, A. Lakshmanan, T. Thilagavathi, Chromate resistance and reduction by bacterial isolates, Aust. J. Basic Appl. Sci., 3 (2009) 1363–1368.
  9. L.S. Clesceri, A.E. Greenberg, A.D. Easton, Eds., Standard Methods for the Examination of Water and Wastewater, 20th ed., Vol. 3, American Public Health Association, 1998, p. 65.
  10. Metcalf, Eddy, Eds., Wastewater Engineering: Treatment of Reuse, 4th ed., McGraw Hill Co., New York, 2003.
  11. Gerard Kiely, Environmental Engineering, McGraw -Hall International Editions, Columbus, OH, USA, 1998.
  12. R.K. Trivedy, Pollution Management in Industries, Environmental Publications, Karad, India, 1979.
  13. S.S. Chen, C.Y. Cheng, C.W. Li, P.H. Chai, Y.M. Chang, Reduction of chromate from electroplating wastewater from pH 1 to 2 using fluidized zero valent iron process, J. Hazard. Mater., 142 (2007) 362–367.
  14. R. Upadhyay, Removal of chromium from electroplating industry waste water, J. Ind. Pollut. Contr., 8 (1992) 81–84.
  15. M.T. Ahmed, S. Taha, T. Chaabane, D. Akretche, R. Maachi, G. Dorange, Nanofiltration process applied to the tannery solutions, Desalination, 200 (2006) 419–420.
  16. B. Preetha, T. Viruthagiri, Bioaccumulation of chromium(VI), copper(II) and nickel(II) ions by growing Rhizopus arrhizus, Biochem. Eng. J., 34 (2007) 131–135.
  17. S.A. Cavaco, S. Fernandes, M.M. Quina, L. Ferreira, Removal of chromium from electroplating industry effluent by ion exchange resins, J. Hazard. Mater., 144 (2007) 634–638.
  18. P.A. Kumar, M. Ray, S. Chakraborty, Hexavalent chromium removal from wastewater using aniline formaldehyde condensate coated silica gel, J. Hazard. Mater., 143 (2007) 24–32.
  19. L.T. Arenas, E.C. Lima, A.A. Santos, J.C.P. Vaghetti, T.M.H. Costa, E.V. Benvenutti, Use of statistical design of experiments to evaluate the sorption capacity of 1,4-diazoniabicycle [2.2.2] octane/silica chloride for Cr(VI) adsorption, Colloids Surf., A, 297 (2007) 240–248.
  20. D. Mohan, K.P. Singh, V.K. Singh, Removal of hexavalent chromium from aqueous solution using low-cost activated carbons derived from agricultural waste materials and activated carbon fabric cloth, Ind. Eng. Chem. Res., 44 (2005) 1027–1042.
  21. I. Ali, V.K. Gupta, Advances in water treatment by adsorption technology, Nat. Protoc., 1 (2006) 2661–2667.
  22. I. Ali, The quest for active carbon adsorbent substitutes: inexpensive adsorbents for toxic metal ions removal from wastewater, Sep. Purif. Rev., 39 (2010) 95–171.
  23. M. Vasanthy, M. Sangeetha, R. Kalaiselvi, A comparative study on the chromium removal efficiency of flyash and commercial activated carbon, J. Ind. Pollut. Contr., 20 (2004) 37–44.
  24. C. Covarrubias, R.A.J. Yanez, R. Garcia, M. Angelica, S.D. Barros, P. Arroyo, E.F. Sousa-Aguiar, Removal of chromium(III) from tannery effluents, using a system of packed columns of zeolite and activated carbon, J. Chem. Technol. Biotechnol., 80 (2005) 899–908.
  25. I. Santiago, V.P. Worland, E.R. Cazares, F. Cadena, Adsorption of Hexavalent Chromium onto Tailored Zeolites, Proc. 47th Purdue Industrial Waste Conference, 1995, pp. 669–710.
  26. S. Dahbi, M. Azzi, N. Saib, M. de la Guardia, R. Faure, R. Durand, Removal of trivalent chromium from tannery waste waters using bone charcoal, Anal. Bioanal. Chem., 374 (2002) 540–546.
  27. A.L. Singh, Removal of chromium from waste water with the help of microbes: a review, e-JST 1 (1994) 1–16.
  28. US Patent 3835042 (Sep. 1974), 5000852 (March 1991), and 7105087 (Sep. 2006); Great Britain: 11394909 (Sep. 1975); Switzerland: 575347 (March 1976); France: 2192071 (Nov. 1976); Canada: 1026472 (Feb 1978).
  29. S. Lagergren, B.K. Svenska, Zur theorie der sogenannten adsorption geloester stoffe, Veternskapsakad Handlingar (Veternskapsakad Documents), 24 (1898) 1–39.
  30. Y.S. Ho, G. McKay, The kinetics of sorption of basic dyes from aqueous solutions by sphagnum moss peat, Can. J. Chem. Eng., 76 (1998) 822–827.
  31. M. Ozacar, I.A. Sengil, A kinetic study of metal complex dye sorption onto pine sawdust, Process Biochem., 40 (2005) 565–572.
  32. G. McKay, M.S. Otterburn, J.A. Aja, Fuller’s earth and fired clay as adsorbents for dye stuffs, Water, Air, Soil, Pollut., 24 (1985) 307–322.
  33. W.J. Weber, J.C. Morris, J. Sanity, Kinetics of adsorption on carbon from solution, Eng. Div. Am. Soc. Civil Eng., 89 (1963) 31–59.
  34. M. Sarkar, P.K. Acharya, B. Bhaskar, Modeling the adsorption kinetics of some priority organic pollutants in water from diffusion and activation energy parameters, J. Colloid Interface Sci., 266 (2003) 28–32.
  35. Y.S. Ho, Effect of pH on lead removal from water using tree fern as the sorbent, Bioresour. Technol., 96 (2005) 1292–1996.
  36. N. Unlu, M. Ersoz, Removal characteristics of heavy metal ions onto a low cost biopolymeric sorbents from aqueous solution, J. Hazard. Mater., 136 (2006) 272–280.
  37. G.E. Boyd, A.W. Adamson, I.S. Myers, The exchange adsorption of ions from aqueous solutions by organic zeolites; kinetics, J. Am. Chem. Soc., 69 (1947) 2836–2848.
  38. A. Mohammad, A.K.R. Rifaqat, A. Rais, A. Jameel, Adsorption studies on Citrus reticulata (fruit peel of orange): removal and recovery of Ni(II) from electroplating wastewater, J. Hazard. Mater., 79 (2000) 117–131.
  39. I.A.W. Tan, A.L. Ahmad, B.H. Hameed, Adsorption of basic dye using activated carbon prepared from oil palm shell: batch and fixed bed studies, Desalination, 225 (2008) 13–28.
  40. A. Seker, T. Shahwan, A.E. Eroglu, Y. Sinan, Z. Demirel, M.C. Dalay, Equilibrium, thermodynamic and kinetic studies for the biosorption of aqueous lead(II), cadmium(II) and nickel(II) ions on Spirulina platensis, J. Hazard. Mater., 154 (2008) 973–980.
  41. M.J. Temkin, V. Pyzhev, Kinetics of Ammonia Synthesis on Promoted Iron Catalysts, Acta Physicochim. URSS, 12 (1940) 327–352.
  42. A.U. Itodo, H.U. Itodo, Sorption energies estimation using Dubinin-Radushkevich and Temkin adsorption isotherms, Life Sci. J., 7 (2010) 31–39.
  43. J. Kota, Z. Stasicka, Chromium occurrence in the environment and methods of its speciation. Environ. Pollut., 107 (2000) 263–283.
  44. J. Jachuła, Z. Hubicki, Removal of Cr(VI) and As(V) ions from aqueous solutions by polyacrylate and polystyrene anion exchange resins, Appl. Water Sci., 3 (2013) 653–664.
  45. T. Shi, Z. Wang, Y. Liu, S. Jia, D. Changming, Removal of hexavalent chromium from aqueous solutions by D301, D314 and D354 anion-exchange resins, J. Hazard. Mater., 161 (2009) 900–906.
  46. Y.S. Ho, G. McKay, Pseudo-second order model for sorption processes, Process Biochem., 34 (1999) 451–465.
  47. R.L. Tseng, Mesopore control of high surface area NaOH-activated carbon, J. Colloid Interface Sci., 303 (2006) 494–502.
  48. F.W. Meng, Study on a Mathematical Model in Predicting Breakthrough Curves of Fixed-Bed Adsorption onto Resin Adsorbent, MS Thesis, Nanjing University, China, 2005, pp. 28–36.
  49. B.K. Nandi, A. Goswami, M.K. Purkait, Adsorption characteristics of brilliant green dye on kaolin, J. Hazard. Mater., 161 (2009) 387–395.
  50. L. Zhang, P. Hu, J. Wang, Q. Liu, R. Huang, Adsorption of methyl orange (MO) by Zr (IV)-immobilized cross-linked chitosan/bentonite composite, Int. J. Biol. Macromolec., 81 (2015) 818–827.
  51. A.E. Ofomaja, Kinetic study and sorption mechanism of methylene blue and methyl violet onto mansonia (Mansonia altissima) wood sawdust, Chem. Eng. J., 143 (2008) 85–95.
  52. Y.S. Ho, J.F. Porter, G. McKay, Equilibrium isotherm studies for the sorption of divalent metal ions onto peat: copper, nickel and lead single component systems, Water, Air, Soil, Pollut., 141 (2002) 1–33.
  53. J.M. Smith, Chemical Engineering Kinetics, McGraw-Hill, New York, 1981.
  54. F. Gode, E. Pehlivan, A comparative study of two chelating ion-exchange resins for the removal of chromium(III) from aqueous solution, J. Hazard. Mater., 100 (2003) 231–243.
  55. F. Gode, E. Pehlivan, Adsorption of Cr(III) ions by Turkish brown coals, Fuel Process. Technol., 86 (2005) 875–884.
  56. M.M. Dubinin, E.D. Zaverina, L.V. Radushkevich, Sorption and structure of activated carbons. 1. Investigation of organic vapour adsorption, Zh. Fiz. Khim., 21 (1947) 1351–1362.