References
- A.K. Krishna, M. Satyanarayanan, P.K. Govil, Assessment of heavy metal pollution in water using multivariate statistical techniques in an industrial area: a case study from Patancheru, Medak District, Andhra Pradesh, India, J. Hazard Mater., 167 (2009) 366–373.
- G. Busca, S. Berardinelli, C. Resini, L. Arrighi, Technologies for the removal of phenol from fluid streams: a short review of recent developments, J. Hazard. Mater., 160 (2008) 265–288.
- G. Nota, C. Improta, Determination on CN- in coke-oven wastewater, Water Res., 13 (1979) 177–179.
- R.R. Dash, A. Gaur, C. Balomajumder, Cyanide in industrial wastewaters and its removal: a review on biotreatment, J. Hazard. Mater., 163 (2009) 1–11.
- W. Kujawski, A. Warszawski, W. Ratajczak, T. Porebski, W. Capala, Removal of phenol from wastewater by different separation techniques, Desalination, 163 (2004) 287–296.
- S.A.K. Palmer, M.A. Breton, T.J. Nunno, D.M. Sullivan, N.F. Surprenant, Technical Resource Document: Treatment Technologies for Metal/Cyanide-Containing Wastes. Volume III, US EPA Rept. No. EPA-60O/S2-87/106, 1988.
- E. Pilon-Smits, Phytoremediation, Annu. Rev. Plant. Bio., 56 (2005) 15–39.
- P.R. Adler, R.A. Arora, A.E. Ghaouth, D.M. Glenn, J.M. Solar, Bioremediation of phenolic compounds from water with plant root surface peroxidases, J. Environ. Qual., 23 (1994) 1113–1117.
- M. Ebel, M.W.H. Evangelou, A. Schaeffer, Cyanide phytoremediation by water hyacinths (Eichhornia crassipes), Chemos., 66 (2007) 16–823.
- E.R. Indrayatie, E. Arisoesilaningsih, The potential of hydrophyte plants for remediation of liquid waste of tapioca factory, J. Deg. Min. Land. Manage., 2 (2015) 347–354.
- Y.M. Nor, Phenol removal by crassiepes in prescence of trace metals, Wat Res., 5 (1994) 1161–1166.
- N. Hafez, S. Abdalla, Y.S. Ramadan, Accumulation of phenol by potamogeton crispus from aqueous industrial waste, Bull. Environ. Contam. Toxicol., 60 (1998) 944–948.
- C. Ram, Y. Sangeeta, Potential of typha angustifolia for phytoremediation of heavy metals from aqueous solution of phenol and melanoidin, Eco. Eng., 36 (2010) 1277–1284.
- L.B. Paiva, J.G. Oliveira, R.A. Azevedo, D.R. Ribeiro, M.G.D. Silva, A.P. Vitoria, Ecophysiological responses of water hyacinth exposed to Cr3+ and Cr6+, Environ. Exp. Bot., 65 (2009) 403–409.
- A. Gothberg, M. Greger, B. Bengtsson, Accumulation of heavy metals in water spinach (Ipomoea aquatic) cultivated in the Bangkok region,Thailand, Environ. Toxicol. Chem., 21 (2009) 1934–1939.
- B.C. Wolverton, M.M. Mckown, Water hyacinths for removal of phenols from polluted water, Aqu. Bot., 2 (1976) 191–201.
- S.A. Sharmin, I. Alam, K.H. Kim, Y.G. Kim, P.J. Kim, J.D. Bahk, B.H. Lee, Chromium-induced physiological and proteomic alterations in roots of miscanthussinensis, Plant. Sci., 187 (2012) 113–126.
- D.R. Hoagland, D.I. Arnon, The water-culture method for growing plantswithout soil, Circular Calif. Agric. Exp. Station., 347 (1950) 32.
- APHA, Standard Methods for the Examination of Water and Wastewater, 20th ed, American Public Health Association, Washington, D.C., 2001.
- M. Dubois, K.A. Gilles, J.K. Hamilton, P.A. Rebers, F. Smith, Colorimetric method for determination of sugars and related substances, Anal. Chem., 28 (1956) 350–356.
- O.H. Lowry, N.J. Rosebraugh, A.L. Farr, R.J. Randall, Protein measurement with folin–phenol reagent, J. Biol. Chem., 193 (1951) 265–275.
- M.M. Bradford, A rapid and sensitive method for the quantitation ofmicrogram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 72 (1976) 248–254.
- S. Maclachalam, S. Zalik, Plastid structure, chlorophyll concentration and free amino acid composition of a chlorophyll mutant of barley, Can. J. Bot., 41 (1963) 1053–1062.
- M.A. Maine, M.V. Duarte, N.L. Sune, Cadmium uptake by floating macrophytes, Wat. Res., 35 (2001) 2629–2634.
- S. Singh, J.S. Melo, S. Eapen, S.F. D’souza, Potential of vetiver (Vetiveriazizanoides L. Nash) for phytoremediation of phenol, Ecotoxicol. Environ. Saf., 71 (2008) 671–676.
- V.C. Pandey, Invasive species based efficient green technology for phytore-mediation of fly ash deposits, J. Geochem. Explor., 123 (2012) 13–18.
- P.H. Nye, P.B. Tinker, Solute Movement in the Soil Root System, Blackwell Scientific Publication, 1977.
- G.A. Roshani, G. Narayanasamy, Determination of kinetic parameters for potassium uptake by wheat at different growth stages, Inter. J. Plant. Prod., 4 (2010) 8043.
- S. Trapp, K.C. Zambrano, K.O. Kusk, U. Karlson, A phytotoxicity test using transpiration of willows, Arch. Environ. Contam. Toxicol., 39 (2000) 154–160.
- N. Singh, C. Balomajumder, Continuous packed bed adsorption of phenol and cyanide onto modified rice husk: an experimental and modeling study, Desal. Wat. Treat., (2016) 1–15.
- H.E. Reynel-Avila, D.I. Mendoza-Castillo, V. Hernandez-Montoya, A.B. Petriciolet, Multicomponent Removal of Heavy Metals from Aqueous Solution Using Low-Cost Sorbents, Water Production and Wastewaters Treatment, Nova Science Publisher, 2011, pp. 69–99.
- A.H. Scragg, The effect of phenol on the growth of chlorella vulgaris and chlorella VT-1, Enzyme. Microb. Technol., 39 (2006) 796–799.
- B. Dhir, P. Sharmila, P.P. Saradhi, Potential of aquatic macrophytes for removing contaminants from the environment, Crit. Rev. Environ. Sci. Technol., 39 (2009) 1–28.
- L. Sanita de tappi, R. Gabbrielli, Responses to zinc in higher plants, Environ. Exp. Bot., 41 (1999) 105–130.
- A. Gupta, C. Balomajumder, Removal of Cr(VI) and phenol using water hyacinth from single and binary solution in the artificial photosynthesis chamber, J. Wat. Pro. Engg., 7 (2015) 74–82.
- L. Jacobson, R. Overstreet, H.M. King, R. Handley, The effect of pH and temperature on the absorption of potassium and bromide by barley roots, Pla. Physio., 37 (1962) 821–825.
- B.S. Smolyakov, A.P. Ryzhikh, S.B. Bortnikova, O.P. Saeva, N.Y. Chernova, Behavior of metals (Cu, Zn and Cd) in the initial stage of water system contamination: effect of pH and suspended particles, App. Geochem., 25 (2010) 1153–1161.
- K. Maxwell, G.N. Johnson, Chlorophyll fluorescence a practical guide, J. Exp. Bot., 51 (2000) 659–668.
- H. Cheng, W. Xu, L. Liu, Q. Zhao, G. Chen, Application of composted sewage sludge (CSS) as s soil amendment for turf grass growth, Ecol. Eng., 29 (2007) 96–104.
- Y. Xiao-Zhang, G. Ji-Dong, L. Luan, Assimilation and physiological effects of ferrocyanide on weeping willows, Ecotoxic. Environ. Saf., 71 (2008) 609–615.
- R. Chandra, S. Yadav, Potential of Typha angustifolia for phytoremediation of heavy metals from aqueous solution of phenol and melanoidin, Ecol. Eng., 36 (2010) 1277–1284.
- L.Q. Ma, K.M. Komar, C. Tu, W. Zhang, Y. Cai, A fern that hyper accumulates arsenic, Nat., 409 (2001) 579.
- A.J.M. Baker, P.L. Walker, Ecophysiology of Metal Uptake by Tolerant Plants, A.J. Shaw (Ed.), Heavy Metal Tolerance in Plants: Evolutionary Aspects, CRC Press, Boca Raton, FL, 1990, p. 155.