References

  1. M.B. Brahim, R. Abdelhédi, Y. Samet, Oxidation of the insecticide dimethoate by Fenton and solar photo-Fenton processes using a lab-scale continuous flow reactor, Desal. Wat. Treat., 52 (2014) 6784–6791.
  2. A. Debnath, K. Deb, K.K. Chattopadhyay, B. Saha, Methyl orange adsorption onto simple chemical route synthesized crystalline α-Fe2O3 nanoparticles: kinetic, equilibrium isotherm, and neural network modeling, Desal. Wat. Treat., 57 (2016) 13549–13560.
  3. J. He, X. Yang, B. Men, Z. Bi, Y. Pu, D. Wang, Heterogeneous Fenton oxidation of catechol and 4-chlorocatechol catalyzed by nano-Fe3O4: role of the interfaces, Chem. Eng. J., 258 (2014) 433–441.
  4. L. Xu, J. Wang, A heterogeneous Fenton-like system with nanoparticulate zero-valent iron for removal of 4-chloro-3-methyl phenol, J. Hazard. Mater., 186 (2011) 256–264.
  5. S.-S. Chen,Y.C. Huang, J.-Y. Lin, M.-H. Lin, Dechlorination of tetrachloroethylene in water using stabilized nanoscale iron and palladized iron particles, Desal. Wat. Treat., 52 (2014) 702–711.
  6. R. Varma, Greener approach to nanomaterials and their sustainable applications, Curr. Opin. Chem. Eng., 1 (2012) 123–128.
  7. X.Q. Li, D.W. Elliott, W.X. Zhang, Zero-valent iron nanoparticles for the abatement of environmental pollutants: materials and engineering aspects, Crit. Rev. Solid State Mater. Sci., 31 (2006) 111–122.
  8. Y. Wang, S. Maksimuk, R. Shen, H. Yang, Synthesis of γ-iron oxide nanoparticles using a freshly-made and recycled ionic liquid, Green Chem., 9 (2007) 1051–1056.
  9. G. Hoag, J. Collins, J. Holcomb, J. Hoag, M. Nadagouda, R. Varma, Degradation of bromothylmol blue by ‘greener’ nano-scale zero-valent iron synthesized using tea polyphenols, J. Mater. Chem., 19 (2009) 8671–8677.
  10. U.S. EPA., Paraquat Dichloride. Registration Eligibility Decision (RED). U.S. Environmental Protection Agency, Washington, DC, EPA 738-F-96-018, 1997.
  11. J.-C. Lee, M.-S. Kim, B.-W. Kim, Removal of paraquat dissolved in a photoreactor with TiO2 immobilized on the glass-tubes of UV lamps, Water Res., 36 (2002) 1776–1782.
  12. M.G. Sorolla II, M.L. Dalida, P. Khemthong, Grisdanurak, Photocatalytic degradation of paraquat using nano-sized Cu-TiO2/SBA-15 under UV and visible light, J. Environ. Sci., 24 (2012) 1125–1132.
  13. M.S.F. Santos, A. Alves, L.M. Madeira, Paraquat removal from water by oxidation with Fenton’s reagent, Chem. Eng. J., 175 (2011) 279–290.
  14. F. Mcneil-Watson, W.W. Tscharnuter, J. Miller, A New Instrument for the Measurement of Very Small Electrophoretic Mobilities using Phase Analysis Light Scattering (PALS), Colloids Surf APhysicochemEng Asp, 140 (1998) 53–57.
  15. X. Lu, B.A. Rasco, J.M.F. Jabal, D.E. Aston, M. Lin, M.E. Konkel, Investigating antibacterial effects of garlic (Allium sativum) concentrate and garlic-derived organosulfur compounds on Campylobacter jejuni by using fourier transform infrared spectroscopy, Raman spectroscopy, and electron microscopy, Appl. Environ. Microbiol., 77 (2011) 5257–5269.
  16. M.C. Mascolo, Y. Pei, T.A. Ring, Room temperature co-precipitation synthesis of magnetite nanoparticles in a large ph window with different bases, Materials, 6 (2013) 5549–5567.
  17. Q. Hua, W. Huang, Chemical etching induced shape change of magnetite microcrystals, J. Mater. Chem., 18 (2008) 4286–4290.
  18. W. Kim, C.-Y. Suh, S.-W. Cho, K.-M. Roh, H. Kwon, K. Song, I.-J. Shon, A new method for the identification and quantification of magnetite–maghemite mixture using conventional X-ray diffraction technique, Talanta, 94 (2012) 348–352.
  19. M.N. Nardagouda, R.S. Varma, Green synthesis of silver and palladium nanoparticles at room temperature using coffee and tea extract, Green Chem., 10 (2008) 859–862.
  20. P. Kajitvichyanukul, M.-C. Lu, A. Jamroensan, Formaldehyde degradation in the presence of methanol by photo-Fenton process, J. Environ. Manage., 86 (2008) 545–553.