References
- J. Kagle, A.W. Porter, R.W. Murdoch, G. Rivera-Cancel, A.G. Hay, Biodegradation of pharmaceutical and personal care products, Adv. Appl. Microbiol., 67 (2009) 65–108.
- A. Bhandari, L.I. Close, W. Kim, R.P. Hunter, D.E. Koch, R.Y. Surampalli, Occurrence of ciprofloxacin, sulfamethoxazole, and azithromycin in municipal wastewater treatment plants, Pract. period. hazard., toxic, radioact. Waste Manage., 12 (2008) 275–281.
- D.G. Larsson, C. de Pedro, N. Paxeus, Effluent from drug manufactures contains extremely high levels of pharmaceuticals, J. Hazard. Mater., 148 (2007) 751–755.
- J.B. Belden, J.D. Maul, M.J. Lydy, Partitioning and photodegradation of ciprofloxacin in aqueous systems in the presence of organic matter, Chemosphere, 66 (2007) 1390–1395.
- S. P. Sun, H. Q. Guo, Q. Ke, J. H. Sun, S. H. Shi, M. L. Zhang, and Q. Zhou. Degradation of antibiotic ciprofloxacin hydrochloride by photo-fenton oxidation process, Environ. Eng. Sci., 26 (2009) 753–759.
- N. Carmosini, S.L. Lee, Ciprofloxacin sorption by dissolved organic carbon from reference and bio-waste materials, Chemosphere, 77 (2009) 813–820.
- B. De Witte, H. Van Langenhove, K. Demeestere, K. Saerens, P. De Wispelaere, J. Dewulf, Ciprofloxacin ozonation in hospital wastewater treatment plant effluent: effect of pH and H2O2, Chemosphere, 78 (2010) 1142–1147.
- C.J. Wang, Z.H. Li, W.T. Jiang, Adsorption of ciprofloxacin on 2:1 dioctahedral clay minerals, Appl. Clay Sci., 53 (2011) 723–728.
- S.A.C. Carabineiro, T. Thavorn-Amornsri, M.F.R. Pereira, J.L. Figueiredo, Adsorption of ciprofloxacin on surface-modified carbon materials, Water Res., 45 (2011) 4583–4591.
- W. Shaoling, Z. Xindong, L. Yanhui, Z. Chunting, D. Qiuju, S. Jiankun, W. Yonghao, P. Xianjia, X. Yanzhi, W. Zonghua and X. Linhua, Adsorption of ciprofloxacin onto biocomposite fibers of graphene oxide/calcium alginate, Chem. Eng. J., 230 (2013) 389–395.
- S. Yuanyuan, Y. Qinyan, G. Baoyu, G. Yuan, X. Xing, L. Qian, W. Yan, Adsorption and cosorption of ciprofloxacin and Ni(II) on activated carbon-mechanism study, J. Taiwan Inst. Chem. Eng., 45 (2014) 681–688.
- B. Madhuleena, S. Roy, S. Mitra, Desalination across a graphene oxide membrane via direct contact membrane distillation, Desalination, 378 (2016) 37–43.
- Y. Zhen, Y. Han, Y. Hu, L. Haibo, L. Aimin, C. Rongshi, Flocculation performance and mechanism of graphene oxide for removal of various contaminants from water, Water Res., 47 (2013) 3037–3046.
- H. Chen, B. Gao, H. Li, Removal of sulfamethoxazole and ciprofloxacin from aqueous solutions by graphene oxide, J. Hazard. Mater., 282 (2015) 201–207.
- L. Dong, Z. Zhu, Y. Qiu, J. Zhao, Removal of lead from aqueous solution by hydroxyapatite/magnetite composite adsorbent, Chem. Eng. J., 165 (2010) 827–834.
- S. Rakshit, D. Sarkar, E. Elzinga, P. Punamiya, R. Datta, Mechanisms of ciprofloxacin removal by nano-sized magnetite, J. Hazard. Mater., 246–247 (2013) 221–226.
- Y. Tang, H. Guo, L. Xiao, S. Yu, N. Gao, Y. Wang, Synthesis of reduced graphene oxide/magnetite composites and investigation of their adsorption performance of fluoroquinolone antibiotics, Colloids Surf., A, 424 (2013) 74–80.
- Y. Gao, L. Zhang, H. Huang, J. Hu, S. Shah, X. Su, Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide, J. Colloid Interface Sci., 1 (2012) 540–546.
- A. Mostofizadeh, Y. Li, B. Song and Y. Huang, Synthesis, properties, and applications of low dimensional carbon-related nanomaterials, J. Nanomater. 2011(3), (2011) Article ID 685081, 21 pages http://dx.doi.org/10.1155/2011/685081
- A. Lunhong, Z. Chunying, C. Zhonglan, Removal of methylene blue from aqueous solution by a solvothermal-synthesized graphene/magnetite composite, J. Hazard. Mater., 192 (2011) 1515–1524.
- Y. Nengsheng, X. Yali, S. Pengzhi, G. Ting, M. Jichao, Synthesis of magnetite/graphene oxide/chitosan composite and its application for protein adsorption, Mater. Sci. Eng., C, 45 (2014) 8–14.
- B. David, Sonochemical degradation of PAH in aqueous solution. Part I: Monocomponent PAH solution, Ultrason. Sonochem., 16 (2009) 260–265.
- M. Yahya, N. Oturan, K. Kacemi, M. Karbane, C.T. Aravindakumar, M. Oturan, Oxidative degradation study on antimicrobial agent ciprofloxacin by electro-Fenton process: kinetics and oxidation products, Chemosphere, 117 (2014) 447–454.
- Wikipedia, (2016a). Rate equation. Retrieved June, 22, 2016 from https://en.wikipedia.org/wiki/Rate_equation
- Q. Huamin, L. Chuannan, S. Min, L. Fuguang, F. Lulu, L. Xiangjun, A chemiluminescence sensor for determination of epinephrine using graphene oxide–magnetite-molecularly imprinted polymers, Carbon, 50 (2012) 4052–4060.
- M. Zhang, D. Lei, X. Yin, L. Chen, Q. Li, Y. Wang, T. Wang, Magnetite/graphene composites: microwave irradiation synthesis and enhanced cycling and rate performances for lithium ion batteries, J. Mater. Chem., 20 (2010) 5538–5543.
- Y. Li, Q. Du, J. Wang, T. Liu, J. Sun, Y. Wang, Z. Wang, Y. Xia, L. Xia, Defluoridation from aqueous solution by manganese oxide coated graphene oxide, J. Fluorine Chem., 148 (2013) 67–73.
- F. Wang, B. Yang, H. Wang, Q. Song, F. Tan, Y. Cao, Removal of ciprofloxacin from aqueous solution by a magnetic chitosan grafted graphene oxide composite, J. Mol. Liq., 222 (2016) 188–194. doi: 10.1016/j.molliq.2016.07.037
- S. Wu, X. Zhao, Y. Li, C. Zhao, Q. Du, J. Sun, Adsorption of ciprofloxacin onto biocomposite fibers of graphene oxide/calcium alginate, Chem. Eng. J., 230 (2013) 389–395.
- S.A.C. Carabineiro, T. Thavorn-amornsri, M.F.R. Pereira, P. Serp, J.L. Figueiredo, Comparison between activated carbon, carbon xerogel and carbon nanotubes for the adsorption of the antibiotic ciprofl oxacin, Catal. Today, 186 (2012) 29–34.
- Z. Hong, L. Donghong, Z. Yan, L. Shuping, L. Zhe, Sorption isotherm and kinetic modeling of aniline on Cr-bentonite, J. Hazard. Mater., 167 (2009) 141–147.
- X. Wang, H. Ngo, W. Guo, Preparation of a specific bamboo based activated carbon and its application for ciprofloxacin removal, Sci. Total Environ., 533 (2015) 32–333.
- N. Genc, E. Dogan, Adsorption kinetics of the antibiotic ciprofloxacin on bentonite, activated carbon, zeolite, and pumice, Desal. Wat. Treat., 53 (2015) 785–793.
- C. Gu, K. Karthikeyan, Sorption of the antimicrobial ciprofloxacin to aluminum and iron hydrous oxides, Environ. Sci. Technol., 39 (2005) 9166–9173.
- C.J. Wang, Z.H. Li, W.T. Jiang, J.S. Jean, C.C. Chuan, Cation exchange interaction between antibiotic ciprofloxacin and montmorillonite, J. Hazard. Mater., 183 (2010) 309–314.
- M. Jalil, M. Baschini, K. Sapag, Influence of pH and antibiotic solubility on the removal of ciprofloxacin from aqueous media using montmorillonite, Appl. Clay Sci., 114 (2015) 69–76.
- G. Liu, N. Wang, J. Zhou, A. Wang, J. Wang, R. Jin, L. Hong, Microbial preparation of magnetite/reduced graphene oxide nanocomposites for the removal of organic dyes from aqueous solutions, RSC Adv., 5 (2015) 95857–95865.
- D. Sponza, R. Oztekin, Ciproxin Removal from a Raw Wastewater by Nano Bentonite-ZnO: Comparison of Adsorption and Photooxidation Processes, Recent Advances in Environmental and Biological Engineering, 2014, ISBN: 978-1-61804-259-0.
- M. Pelaez, N. Nolan, S. Pillai, M. Seery, P. Falaras, A. Kontos, P. Dunlop, J. Hamilton, J. Byrne, K. O’Shea, M. Entezari, D. Dionysiou, A review on the visible light active titanium dioxide photocatalysts for environmental applications, Appl. Catal., B, 125 (2012) 331–349.
- L. Zhe-Qi, W. Hui-Long, Z. Long-Yun, Z. Jian-Jun, Z. Yao-Shan, Preparation and photocatalytic performance of magnetic TiO2–Fe3O4/graphene (RGO) composites under VIS-light irradiation, Ceram. Int., 41 (2015) 10634–10643.
- L. Xinlin, L. Peng, Y. Guanxin, M. Changchang, T. Yangfeng, W. Yuting, H. Pengwei, P. Jianming, S. Weidong, Y. Yongsheng, Selective degradation of ciprofloxacin with modified NaCl/TiO2 photocatalyst by surface molecular imprinted technology, Colloids Surf., A, 441 (2014) 420–426.
- Y. Yan, S. Shaofang, S. Yang, Y. Xu, G. Weisheng, L. Xinlin, S. Weidong, Microwave-assisted in situ synthesis of reduced graphene oxide-BiVO4 composite photocatalysts and their enhanced photocatalytic performance for the degradation of ciprofloxacin, J. Hazard. Mater., 250–251 (2013) 106–114.
- R. Upadhyay, N. Soin, S. Roy, Role of graphene/metal oxide composites as photocatalysts, adsorbents and disinfectants in water treatment: a review, RSC Adv., 114 (2013) 69–76.
- C. Lin, M. Wu, Degradation of ciprofloxacin by UV/S2O82− process in a large photoreactor, J. Photochem. Photobiol., A, 285 (2014) 1–6.
- A. Hassani, A. Khataee, S. Karaca, Photocatalytic degradation of ciprofloxacin by synthesized TiO2 nanoparticles on montmorillonite: effect of operation parameters and artificial neural network modeling, J. Mol. Catal., 409 (2015) 149–161.
- N. Daneshvar, S. Aber, M.S. Dorraji, R. Khataeea, H. Rasoulifardm, Photocatalytic degradation of the insecticide diazinon in the presence of prepared nanocrystalline ZnO powders under irradiation of UV-C light, Sep. Purif. Technol., 58 (2007) 91–98.
- L. Yang, L. Yu, M. Ray, Degradation of paracetamol in aqueous solutions by TiO2 photocatalysis, Water Res., 42 (2008) 3480–3488.
- Y. Wang, G. Von, D.H. Volman, D.C. Neckers, Advances in Photochemistry, Bünau, Ed., Wiley, New York, 1995, pp. 179–234.
- T. An, H. Yang, G. Li, W. Song, W. Cooper, X. Nie, Kinetics and mechanism of advanced oxidation processes (AOPs) in degradation of ciprofloxacin in water, Appl. Catal., B, 94 (2010) 288–294.