References

  1. J. Kagle, A.W. Porter, R.W. Murdoch, G. Rivera-Cancel, A.G. Hay, Biodegradation of pharmaceutical and personal care products, Adv. Appl. Microbiol., 67 (2009) 65–108.
  2. A. Bhandari, L.I. Close, W. Kim, R.P. Hunter, D.E. Koch, R.Y. Surampalli, Occurrence of ciprofloxacin, sulfamethoxazole, and azithromycin in municipal wastewater treatment plants, Pract. period. hazard., toxic, radioact. Waste Manage., 12 (2008) 275–281.
  3. D.G. Larsson, C. de Pedro, N. Paxeus, Effluent from drug manufactures contains extremely high levels of pharmaceuticals, J. Hazard. Mater., 148 (2007) 751–755.
  4. J.B. Belden, J.D. Maul, M.J. Lydy, Partitioning and photodegradation of ciprofloxacin in aqueous systems in the presence of organic matter, Chemosphere, 66 (2007) 1390–1395.
  5. S. P. Sun, H. Q. Guo, Q. Ke, J. H. Sun, S. H. Shi, M. L. Zhang, and Q. Zhou. Degradation of antibiotic ciprofloxacin hydrochloride by photo-fenton oxidation process, Environ. Eng. Sci., 26 (2009) 753–759.
  6. N. Carmosini, S.L. Lee, Ciprofloxacin sorption by dissolved organic carbon from reference and bio-waste materials, Chemosphere, 77 (2009) 813–820.
  7. B. De Witte, H. Van Langenhove, K. Demeestere, K. Saerens, P. De Wispelaere, J. Dewulf, Ciprofloxacin ozonation in hospital wastewater treatment plant effluent: effect of pH and H2O2, Chemosphere, 78 (2010) 1142–1147.
  8. C.J. Wang, Z.H. Li, W.T. Jiang, Adsorption of ciprofloxacin on 2:1 dioctahedral clay minerals, Appl. Clay Sci., 53 (2011) 723–728.
  9. S.A.C. Carabineiro, T. Thavorn-Amornsri, M.F.R. Pereira, J.L. Figueiredo, Adsorption of ciprofloxacin on surface-modified carbon materials, Water Res., 45 (2011) 4583–4591.
  10. W. Shaoling, Z. Xindong, L. Yanhui, Z. Chunting, D. Qiuju, S. Jiankun, W. Yonghao, P. Xianjia, X. Yanzhi, W. Zonghua and X. Linhua, Adsorption of ciprofloxacin onto biocomposite fibers of graphene oxide/calcium alginate, Chem. Eng. J., 230 (2013) 389–395.
  11. S. Yuanyuan, Y. Qinyan, G. Baoyu, G. Yuan, X. Xing, L. Qian, W. Yan, Adsorption and cosorption of ciprofloxacin and Ni(II) on activated carbon-mechanism study, J. Taiwan Inst. Chem. Eng., 45 (2014) 681–688.
  12. B. Madhuleena, S. Roy, S. Mitra, Desalination across a graphene oxide membrane via direct contact membrane distillation, Desalination, 378 (2016) 37–43.
  13. Y. Zhen, Y. Han, Y. Hu, L. Haibo, L. Aimin, C. Rongshi, Flocculation performance and mechanism of graphene oxide for removal of various contaminants from water, Water Res., 47 (2013) 3037–3046.
  14. H. Chen, B. Gao, H. Li, Removal of sulfamethoxazole and ciprofloxacin from aqueous solutions by graphene oxide, J. Hazard. Mater., 282 (2015) 201–207.
  15. L. Dong, Z. Zhu, Y. Qiu, J. Zhao, Removal of lead from aqueous solution by hydroxyapatite/magnetite composite adsorbent, Chem. Eng. J., 165 (2010) 827–834.
  16. S. Rakshit, D. Sarkar, E. Elzinga, P. Punamiya, R. Datta, Mechanisms of ciprofloxacin removal by nano-sized magnetite, J. Hazard. Mater., 246–247 (2013) 221–226.
  17. Y. Tang, H. Guo, L. Xiao, S. Yu, N. Gao, Y. Wang, Synthesis of reduced graphene oxide/magnetite composites and investigation of their adsorption performance of fluoroquinolone antibiotics, Colloids Surf., A, 424 (2013) 74–80.
  18. Y. Gao, L. Zhang, H. Huang, J. Hu, S. Shah, X. Su, Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide, J. Colloid Interface Sci., 1 (2012) 540–546.
  19. A. Mostofizadeh, Y. Li, B. Song and Y. Huang, Synthesis, properties, and applications of low dimensional carbon-related nanomaterials, J. Nanomater. 2011(3), (2011) Article ID 685081, 21 pages http://dx.doi.org/10.1155/2011/685081
  20. A. Lunhong, Z. Chunying, C. Zhonglan, Removal of methylene blue from aqueous solution by a solvothermal-synthesized graphene/magnetite composite, J. Hazard. Mater., 192 (2011) 1515–1524.
  21. Y. Nengsheng, X. Yali, S. Pengzhi, G. Ting, M. Jichao, Synthesis of magnetite/graphene oxide/chitosan composite and its application for protein adsorption, Mater. Sci. Eng., C, 45 (2014) 8–14.
  22. B. David, Sonochemical degradation of PAH in aqueous solution. Part I: Monocomponent PAH solution, Ultrason. Sonochem., 16 (2009) 260–265.
  23. M. Yahya, N. Oturan, K. Kacemi, M. Karbane, C.T. Aravindakumar, M. Oturan, Oxidative degradation study on antimicrobial agent ciprofloxacin by electro-Fenton process: kinetics and oxidation products, Chemosphere, 117 (2014) 447–454.
  24. Wikipedia, (2016a). Rate equation. Retrieved June, 22, 2016 from https://en.wikipedia.org/wiki/Rate_equation
  25. Q. Huamin, L. Chuannan, S. Min, L. Fuguang, F. Lulu, L. Xiangjun, A chemiluminescence sensor for determination of epinephrine using graphene oxide–magnetite-molecularly imprinted polymers, Carbon, 50 (2012) 4052–4060.
  26. M. Zhang, D. Lei, X. Yin, L. Chen, Q. Li, Y. Wang, T. Wang, Magnetite/graphene composites: microwave irradiation synthesis and enhanced cycling and rate performances for lithium ion batteries, J. Mater. Chem., 20 (2010) 5538–5543.
  27. Y. Li, Q. Du, J. Wang, T. Liu, J. Sun, Y. Wang, Z. Wang, Y. Xia, L. Xia, Defluoridation from aqueous solution by manganese oxide coated graphene oxide, J. Fluorine Chem., 148 (2013) 67–73.
  28. F. Wang, B. Yang, H. Wang, Q. Song, F. Tan, Y. Cao, Removal of ciprofloxacin from aqueous solution by a magnetic chitosan grafted graphene oxide composite, J. Mol. Liq., 222 (2016) 188–194. doi: 10.1016/j.molliq.2016.07.037
  29. S. Wu, X. Zhao, Y. Li, C. Zhao, Q. Du, J. Sun, Adsorption of ciprofloxacin onto biocomposite fibers of graphene oxide/calcium alginate, Chem. Eng. J., 230 (2013) 389–395.
  30. S.A.C. Carabineiro, T. Thavorn-amornsri, M.F.R. Pereira, P. Serp, J.L. Figueiredo, Comparison between activated carbon, carbon xerogel and carbon nanotubes for the adsorption of the antibiotic ciprofl oxacin, Catal. Today, 186 (2012) 29–34.
  31. Z. Hong, L. Donghong, Z. Yan, L. Shuping, L. Zhe, Sorption isotherm and kinetic modeling of aniline on Cr-bentonite, J. Hazard. Mater., 167 (2009) 141–147.
  32. X. Wang, H. Ngo, W. Guo, Preparation of a specific bamboo based activated carbon and its application for ciprofloxacin removal, Sci. Total Environ., 533 (2015) 32–333.
  33. N. Genc, E. Dogan, Adsorption kinetics of the antibiotic ciprofloxacin on bentonite, activated carbon, zeolite, and pumice, Desal. Wat. Treat., 53 (2015) 785–793.
  34. C. Gu, K. Karthikeyan, Sorption of the antimicrobial ciprofloxacin to aluminum and iron hydrous oxides, Environ. Sci. Technol., 39 (2005) 9166–9173.
  35. C.J. Wang, Z.H. Li, W.T. Jiang, J.S. Jean, C.C. Chuan, Cation exchange interaction between antibiotic ciprofloxacin and montmorillonite, J. Hazard. Mater., 183 (2010) 309–314.
  36. M. Jalil, M. Baschini, K. Sapag, Influence of pH and antibiotic solubility on the removal of ciprofloxacin from aqueous media using montmorillonite, Appl. Clay Sci., 114 (2015) 69–76.
  37. G. Liu, N. Wang, J. Zhou, A. Wang, J. Wang, R. Jin, L. Hong, Microbial preparation of magnetite/reduced graphene oxide nanocomposites for the removal of organic dyes from aqueous solutions, RSC Adv., 5 (2015) 95857–95865.
  38. D. Sponza, R. Oztekin, Ciproxin Removal from a Raw Wastewater by Nano Bentonite-ZnO: Comparison of Adsorption and Photooxidation Processes, Recent Advances in Environmental and Biological Engineering, 2014, ISBN: 978-1-61804-259-0.
  39. M. Pelaez, N. Nolan, S. Pillai, M. Seery, P. Falaras, A. Kontos, P. Dunlop, J. Hamilton, J. Byrne, K. O’Shea, M. Entezari, D. Dionysiou, A review on the visible light active titanium dioxide photocatalysts for environmental applications, Appl. Catal., B, 125 (2012) 331–349.
  40. L. Zhe-Qi, W. Hui-Long, Z. Long-Yun, Z. Jian-Jun, Z. Yao-Shan, Preparation and photocatalytic performance of magnetic TiO2–Fe3O4/graphene (RGO) composites under VIS-light irradiation, Ceram. Int., 41 (2015) 10634–10643.
  41. L. Xinlin, L. Peng, Y. Guanxin, M. Changchang, T. Yangfeng, W. Yuting, H. Pengwei, P. Jianming, S. Weidong, Y. Yongsheng, Selective degradation of ciprofloxacin with modified NaCl/TiO2 photocatalyst by surface molecular imprinted technology, Colloids Surf., A, 441 (2014) 420–426.
  42. Y. Yan, S. Shaofang, S. Yang, Y. Xu, G. Weisheng, L. Xinlin, S. Weidong, Microwave-assisted in situ synthesis of reduced graphene oxide-BiVO4 composite photocatalysts and their enhanced photocatalytic performance for the degradation of ciprofloxacin, J. Hazard. Mater., 250–251 (2013) 106–114.
  43. R. Upadhyay, N. Soin, S. Roy, Role of graphene/metal oxide composites as photocatalysts, adsorbents and disinfectants in water treatment: a review, RSC Adv., 114 (2013) 69–76.
  44. C. Lin, M. Wu, Degradation of ciprofloxacin by UV/S2O82− process in a large photoreactor, J. Photochem. Photobiol., A, 285 (2014) 1–6.
  45. A. Hassani, A. Khataee, S. Karaca, Photocatalytic degradation of ciprofloxacin by synthesized TiO2 nanoparticles on montmorillonite: effect of operation parameters and artificial neural network modeling, J. Mol. Catal., 409 (2015) 149–161.
  46. N. Daneshvar, S. Aber, M.S. Dorraji, R. Khataeea, H. Rasoulifardm, Photocatalytic degradation of the insecticide diazinon in the presence of prepared nanocrystalline ZnO powders under irradiation of UV-C light, Sep. Purif. Technol., 58 (2007) 91–98.
  47. L. Yang, L. Yu, M. Ray, Degradation of paracetamol in aqueous solutions by TiO2 photocatalysis, Water Res., 42 (2008) 3480–3488.
  48. Y. Wang, G. Von, D.H. Volman, D.C. Neckers, Advances in Photochemistry, Bünau, Ed., Wiley, New York, 1995, pp. 179–234.
  49. T. An, H. Yang, G. Li, W. Song, W. Cooper, X. Nie, Kinetics and mechanism of advanced oxidation processes (AOPs) in degradation of ciprofloxacin in water, Appl. Catal., B, 94 (2010) 288–294.