References

  1. Q. Bu, B. Wang, J. Huang, S. Deng, G. Yu, Pharmaceuticals and personal care products in the aquatic environment in China: a review, J. Hazard. Mater., 262 (2013) 189–211.
  2. P.P. Marcinowski, J.P. Bogacki, J.H. Naumczyk, Cosmetic wastewater treatment using the Fenton, Photo-Fenton and H2O2/UV processes, J. Environ. Sci. Heal A Part A, 49 (2014) 1531–1541.
  3. A. Tawfika, O.E. Batrawy, Anaerobic biodegradation of personel care products (PCPs) wastewater in an up-flow anaerobic sludge blanket (UASB) reactor, Desal. Wat. Treat., 41 (2012) 1–3.
  4. P. Bautista, A.F. Mohedano, M.A. Gilarranz, J.A. Casas, J.J. Rodriguez, Application of Fenton oxidation to cosmetic wastewaters treatment, J. Hazard Mater., 143 (2007) 128–134.
  5. F. Aloui, S. Kchaou, S. Sayadi, Physicochemical treatments of anionic surfactants wastewater: effect on aerobic biodegradability, J. Hazard. Mater., 164 (2009) 353–359.
  6. G. Loraine, M. Pettigrove, Seasonal variations in concentrations of pharmaceuticals and personal care products in drinking water and reclaimed wastewater in Southern California, Environ. Sci. Technol., 40 (2006) 687–695.
  7. S. Elabbas, N. Ouazzani, L. Mandi, F. Berrekhis, M. Perdicakis, S. Pontvianne, M-N. Pons, F. Lapicque, J-P. Leclerc, Treatment of highly concentrated tannery wastewater using electrocoagulation: Influence of the quality of aluminium used for the electrode, J. Hazard Mater., 319 (2016) 69–77.
  8. K. Thirugnanasambandham, V. Sivakumar, K. Shine, Studies on treatment of egg processing industry wastewater using electrocoagulation method: optimization using response surface methodology, Desal. Wat. Treat., 57 (2016) 21721–21729.
  9. S. Safari, M.A. Aghdam, H.-R. Kariminia, Electrocoagulation for COD and diesel removal from oily wastewater, Int. J. Environ. Sci. Technol., 13 (2016) 231–242.
  10. M. Kobya, E. Demirbas, Evaluations of operating parameters on treatment of can manufacturing wastewater by electrocoagulation, J. Water Process Eng. 8 (2015) 64–74.
  11. S. Zodi, O. Potier, F. Lapicque, J. Leclerc, Treatment of texile wastewaters by electrocoagulation: effect of operating parameters on the sludge settling characteristics, Sep. Purif. Technol., 69 (2009) 29–36.
  12. K. Thirugnanasambandham, V. Sivakumar, J.P. Maran, Performance evaluation and optimization of electrocoagulation process to treat grey wastewater, Desal. Wat. Treat., 55 (2015) 1703–1711.
  13. T. Karichappan, S. Venkatachalam, P.M. Jeganathan, K. Sengodan, Treatment of rice mill wastewater using continuous electrocoagulation technique: optimization and modelling, J. Korean Chem. Soc., 57 (2013) 761–768.
  14. O. Chavalparit, M. Ongwandee, Optimizing electrocoagulation process for the treatment of biodiesel wastewater using response surface methodology, J. Environ. Sci., 21 (2009) 1491–1496.
  15. APHA, AWWA, WPCF, Standard Methods for the Examination of Water and Wastewater, 21st ed., American Public Health Association, Washington, DC, 2005.
  16. E. Gengec, M. Kobya, E. Demirbas, A. Akyol, K. Oktor, Optimization of baker’s yeast wastewater using response surface methodology by electrocoagulation, Desalination, 286 (2012) 200–209.
  17. G. Varank, M.E. Sabuncu, Application of Central Composite Design approach for dairy wastewater treatment by electrocoagulation using iron and aluminum electrodes: modeling and optimization, Desal. Wat. Treat., 56 (2014) 33–54.
  18. S. Bajpai, S.K. Gupta, A. Dey, M.K. Jha, V.J. Bajpai, S. Joshi, Application of Central Composite Design approach for removal of chromium (VI) from aqueous solution using weakly anionic resin: modeling, optimization, and study of interactive variables, J. Hazard. Mater., 227–228 (2012) 436–444.
  19. A.R. Amani-Ghadim, S. Aber, A. Olad, H. Ashassi-Sorkhabi, Optimization of electrocoagulation processfor removal of an azo dye using response surface methodology and investigation on the occurrence of destructive side reactions, Chem. Eng. Process., 64 (2013) 68–78.
  20. X. Jing, Y. Cao, X. Zhang, D. Wang, X. Wu, H. Xu, Biosorption of Cr(VI) from simulated wastewater using a cationic surfactant modified spent mushroom, Desalination, 269 (2011) 120–127.
  21. T. Olmez, The optimization of Cr(VI) reduction and removal by electrocoagulation using response surface methodology, J. Hazard. Mater., 162 (2009) 1371–1378.
  22. A. Guzman, J.L. Nava, O. Coreno, I. Rodriguez, S. Gutierrez, Arsenic and fluoride removal from groundwater by electrocoagulation using a continuous fitler-press reactor, Chemosphere, 144 (2016) 2113–2120.
  23. P. Aswathy, R. Gandhimathi, S.T. Ramesh, P.V. Nidheesh, Removal of organics from bilge water by batch electrocoagulation, Sep. Purif. Technol., 159 (2016) 108–115.
  24. M.Y.A. Mollah, P. Morkovsky, J.A.G. Gomes, M. Kesmez, J. Parga, D.L. Cocke, Fundamentals, present and future perspectives of electrocoagulation, J. Hazard. Mater., B114 (2004) 199–210.
  25. M.V. Anand, V.C. Srivastava, S. Singh, R. Bhatnagar, I.D. Mall, Electrochemical treatment of alkali decrement wastewater containing terephthalic acid using iron electrodes, J. Taiwan Inst. Chem. Eng., 45 (2014) 908–913.
  26. K.K. Garg, B. Prasad, Development of Box Behnken design for treatment of terephthalic acid wastewater by electrocoagulation process: optimization of process and analysis of sludge, J. Environ. Chem. Eng., 4 (2016) 178–190.