References

  1. N.M. Nikačević, A.E. Huesman, P.M. Van den Hof, A.I. Stankiewicz, Opportunities and challenges for process control in process intensification, Chem. Eng. Process., 52 (2012) 1–15.
  2. A. Stankiewicz, J.A. Moulijn, Process intensification: transforming chemical engineering, Chem. Eng. Prog., 96 (2000) 22–34.
  3. A. Stankiewicz, Reactive separations for process intensification: an industrial perspective, Chem. Eng. Process., 42 (2003) 137–144.
  4. Brazilian Supplying Company - CONAB. 105: 27-31-2009 [cited 2016 July 5]. Available from: http://www.conab.gov.br
  5. J. Bohdziewicz, E. Sroka, Integrated system of activated sludge–reverse osmosis in the treatment of the wastewater from the meat industry, Process Biochem., 40 (2005) 1517–1523.
  6. R. Margesin, F. Schinner, Biodegradation and bioremediation of hydrocarbons in extreme environments, Appl. Microbiol. Biotechnol., 56 (2001) 650–663.
  7. N. Jiménez, M. Viñas, J. Sabaté, S. Díez, J.M. Bayona, A.M. Solanas, J. Albaiges, The Prestige oil spill. Enhanced biodegradation of a heavy fuel oil under field conditions by the use of an oleophilic fertilizer, Environ. Sci. Technol., 40 (2006) 2578–2585.
  8. A. Eusébio, M. Mateus, L. Baeta-Hall, M.C. Saágua, R. Tenreiro, E. Almeida-Vara, J.C. Duarte, Characterization of the microbial communities in jet-loop (JACTO) reactors during aerobic olive oil wastewater treatment, Int. Biodeter. Biodegr., 59 (2007) 226–233.
  9. A. Chavan, S. Mukherji, Treatment of hydrocarbon-rich wastewater using oil degrading bacteria and phototrophic microorganisms in rotating biological contactor: effect of N:P ratio, J. Hazard. Mater., 154 (2008) 63–72.
  10. M.I. Queiroz, M.O. Hornes, A.G. Silva-Manetti, E. Jacob-Lopes, Single-cell oil production by cyanobacterium Aphanothece microscopica Nägeli cultivated heterotrophically in fish processing wastewater, Appl. Energy, 88 (2011) 3438–3443.
  11. M.I. Queiroz, M.O. Hornes, S.M.A. Gonçalves, L.Q. Zepka, E. Jacob-Lopes, Fish processing wastewater as a platform of the microalgal biorefineries, Biosyst. Eng., 115 (2013) 195–202.
  12. M.D. Guiry, G.M. Guiry, AlgaeBase, National University of Ireland, Galway, 2013. Available at: http://www.algaebase.org
  13. M.M. Maroneze, J.S. Barin, C.R. Menezes, M.I. Queiroz, L.Q. Zepka, E. Jacob-Lopes, Treatment of cattle-slaughterhouse wastewater and the reuse of sludge for biodiesel production by microalgal heterotrophic bioreactors, Sci. Agric., 71 (2014) 521–524.
  14. Y.-K. Lee, Microalgal mass culture systems and methods: their limitation and potential, J. Appl. Phycol., 13 (2001) 307–315.
  15. N.H. Norsker, M.J. Barbosa, M.H. Vermuë, R.H. Wijffels, Microalgal production – a close look at the economics, Biotechnol. Adv., 29 (2011) 24–27.
  16. F.G. Acién, J.M. Fernández, J.J. Magán, E. Molina, Production cost of a real microalgae production plant and strategies to reduce it, Biotechnol. Adv., 30 (2012) 1344–1353.
  17. R.H. Wijffels, M.J. Barbos, M.H. Eppink, Microalgae for the production of bulk chemicals and biofuels, Biofuel. Bioprod. Bior., 4 (2010) 287–295.
  18. E. Salehi, S.S. Madaeni, A.A. Shamsabadi, S. Laki, Applicability of ceramic membrane filters in pretreatment of coke-contaminated petrochemical wastewater: economic feasibility study, Ceram. Int., 40 (2014) 4805–4810.
  19. E.C. Francisco, D. Balthazar, E. Jacob-Lopes, T.T. Franco, Microalgae as feedstock for biodiesel production: carbon dioxide sequestration, lipid production and biofuel quality, J. Chem. Technol. Biotechnol., 85 (2010) 395–403.
  20. R. Rippka, J. Deruelles, J.B. Waterbury, M. Herdman, R.Y. Stanier, Generic assignments, strain histories and properties of pure cultures of cyanobacteria, J. Gen. Microbiol., 111 (1979) 1–61.
  21. American Public Health Association – APHA, Standard Methods for the Examination of Water and Wastewater, 20th ed., Washington, D.C., 2005.
  22. E. Jacob-Lopes, A.M. Santos, D.B. Rodrigues, M.C.Y. Lui, C. Souza, D. Prudente, L.Q. Zepka, Bioprocess of Conversion of Hybrid Wastewaters, Heterotrophic Bioreactor, Bioproducts and Their Uses, Brazilian Patent Application BR 10 2013 020490-0 A2, 2013.
  23. A.M. Santos, Agroindustrial Biorefineries, Master Thesis, Federal University of Santa Maria, Santa Maria, RS, 2013.
  24. F. Garcia-Ochoa, E. Gomez, Bioreactor scale-up and oxygen transfer rate in microbial processes: an overview, Biotechnol. Adv., 27 (2009) 153–176.
  25. J.E. Bailey, D.F. Ollis, Biochemical Engineering Fundamentals, 2nd ed., McGraw-Hill, New York, 1986.
  26. Matches’ Process Equipment Cost Estimates, 2014 (cited 12 July 2016). Available from: http://www.matche.com
  27. M.S. Peters, K.D. Timmerhaus, Plant Design and Economics for Chemical Engineers, 5th ed., McGraw-Hill, New York, 2003.
  28. M.A. Curran, Scientific Applications International Corporation (SAIC), Life-cycle Assessment: Principles and Practice, US Environmental Protection Agency – EPA, 2006.
  29. R.O. Cristóvão, C.M. Botelho, R.J.E. Martins, J.M. Loureiro, R.A.R. Boaventura, Fish canning industry wastewater treatment for water reuse – a case study, J. Clean. Prod., 87 (2015) 603–612.
  30. M. Asselin, P. Drogui, H. Benmoussa, J.F. Blais, Effectiveness of electrocoagulation process in removing organic compounds from slaughterhouse wastewater using monopolar and bipolar electrolytic cells, Chemosphere, 72 (2008) 1727–1733.
  31. Agricultural Prices, National Agricultural Statistics, United States Department of Agricultural – USDA (cited 3 July 2016). Available from: http://www.ers.usda.gov
  32. C.S. Park, Contemporary Engineering Economics, 4th ed., Prentice Hall, London, 2007.
  33. H.J. Lang, D.N. Merino, The Selection Process for Capital Projects, John Wiley & Sons, New York, 1993.