References

  1. C.M. Kao, J. Prosser, Evaluation of natural attenuation rate at a gasoline spill site, J. Hazard. Mater., 82 (2001) 275–289.
  2. A.E. Stricker, H. Lossing, J.H. Gibson, Y. Hong, J.C. Urbanic, Pilot-scale testing of a new configuration of the membrane aerated biofilm reactor (MABR) to treat high-strength industrial sewage, Water Environ. Res., 83 (2011) 3–14.
  3. C.P. Ardito, J.F. Billings, Alternative Remediation Strategies: The Subsurface Volatilization and Ventilation System, Proc. Petroleum Hydrocarbons and Organic Chemicals in Groundwater: Prevention, Detection, and Restoration Conference, National Groundwater Association, Dublin, OH, 1990, pp. 281–296.
  4. M.C. Marley, D.J. Hazebrouck, M.T. Walsh, The application of in situ air sparging as an innovative soils and groundwater remediation technology, Ground Water Monit. Remediat., 12 (1992) 137–145.
  5. W.C. Leonard, R.A. Brown, Air Sparging: An Optimal Solution, Proc. Petroleum Hydrocarbons and Organic Chemicals in Groundwater: Prevention, Detection, and Restoration Conference, National Groundwater Association, Dublin, OH, 1992, pp. 349–363.
  6. R.L. Johnson, P.C. Johnson, D.B. McWhorter, R.E. Hinchee, I. Goodman, An overview of in situ air sparging, Ground Water Monit. Remediat., 13 (1993) 127–135.
  7. K.R. Reddy, S. Kosgi, J. Zhou, A review of in-situ air sparging for the remediation of VOC-contaminated saturated soils and groundwater, Hazard. Waste Hazard. Mater., 12 (1995) 97–118.
  8. W.S. Clayton, A field and laboratory investigation of air fingering during air sparging, Ground Water Monit. Remediat., 18 (1998) 134–145.
  9. J.A. Adams, K.R. Reddy, Removal of dissolved and NAPL– phase benzene pools from groundwater using in-situ air sparging, J. Environ. Eng., 126 (2000) 697–707.
  10. R.E. Hinchee, Air Sparging for Site Remediation, Lewis Publishers/CRC Press, Boca Raton, FL, 1994, pp. 38–55.
  11. U.S. Environmental Protection Agency (EPA), How to Evaluate Alternative Cleanup Technologies for Underground Storage Tank Sites: A Guide for Corrective Action Plan Reviewers, 2004, EPA 510-R-04-002.
  12. W. Ji, A. Dahmani, D.P. Ahlfeld, J.D. Lin, E. Hill, Laboratory study of air sparging: airflow visualization, Ground Water Monit. Remediat., 13 (1993) 115–126.
  13. K.R. Reddy, J.A. Adams, System effects on benzene removal from saturated soils and ground water using air sparging, J. Environ. Eng. 124 (1998) 288–299.
  14. S.W. Rogers, S.K. Ong, Influence of porous media, airflow rate, and air channel spacing on benzene NAPL removal during air sparging, Environ. Sci. Technol., 34 (2000) 764–770.
  15. J.W. Peterson, M.J. DeBoer, K.L. Lake, A laboratory simulation of toluene cleanup by air sparging of water-saturated sands, J. Hazard. Mater., 72 (2000) 167–178.
  16. K.R. Reddy, J.A. Adams, Effects of soil heterogeneity on airflow patterns and hydrocarbon removal during in situ air sparging, J. Geotech. Geoenviron. Eng., 127 (2001) 234–247.
  17. G. Heron, J.S. Gierke, B. Faulkner, S. Mravik, L. Wood, C.G. Enfield, Pulsed air sparging in aquifers contaminated with dense nonaqueous phase liquids, Ground Water Monit. Remediat., 22 (2002) 73–82.
  18. W.A.P. Waduge, K. Soga, J. Kawabata, Effect of NAPL entrapment conditions on air sparging remediation efficiency, J. Hazard. Mater., 110 (2004) 173–183.
  19. Y.J. Tsai, Y.C. Kuo, T.C. Chen, Groundwater remediation using a novel micro-bubble sparging method, J. Environ. Eng. Manage., 17 (2007) 151–155.
  20. L. Hu, X. Wu, Y. Liu, J.N. Meegoda, S. Gao, Physical modeling of air flow during air sparging remediation, Environ. Sci. Technol., 44 (2010) 3883–3888.
  21. C.Y. Qin, Y.S. Zhao, Y. Su, W. Zheng, Remediation of nonaqueous phase liquid polluted sites using surfactant-enhanced air sparging and soil vapor extraction, Water Environ. Res., 85 (2013) 133–140.
  22. C.Y. Qin, Y.S. Zhao, L.L. Li, W. Zheng, Mechanisms of surfactant-enhanced air sparging in different media, J. Environ. Sci. Health., Part A, 48 (2013) 1047–1055.
  23. C.Y. Qin, Y.S. Zhao, L.L. Li, W. Zheng, The influence zone of surfactant-enhanced air sparging in different media, Environ Technol., 35 (2014) 1190–1198.
  24. M.W. Kresge, M.F. Dacey, An Evaluation of In Situ Groundwater Aeration, Presented at Hazardous Waste Materials Management Conference, Atlantic City, NJ, 1991.
  25. R.A. Brown, F. Jasiulewicz, Air sparging: a new model for remediation, Pollut. Eng., 7 (1992) 52–55.
  26. D.W. Felten, M.C. Leahy, L.J. Bealer, B.A. Kline, Case study: site remediation using air sparging and soil vapor extraction, Proc. Petroleum Hydrocarbons and Organic Chemicals in Groundwater: Prevention, Detection, and Restoration Conference, National Ground Water Association, Dublin, OH, 1992, pp. 395–411.
  27. M.E. Loden, A Technology Assessment of Soil Vapor Extraction and Air Sparging, U.S. Environmental Protection Agency, Office of Research and Development, Washington, DC, 1992, EPA/600/R-92/173.
  28. E.K. Nyer, S.A. Sutherson, Air sparging: savior of groundwater remediations or just blowing bubbles in the bath tub? Ground Water Monit. Remediat., 13 (1993) 87–91.
  29. S. Gao, J.N. Meegoda, L. Hu, Microscopic modeling of air migration during air sparging, J. Hazard. Toxic Radioact. Waste, 15 (2011) 70–79.
  30. S. Gao, J.N. Meegoda, L. Hu, A dynamic two-phase flow model for air sparging, Int. J. Numer. Anal. Methods Geomech., 37 (2013) 1801–1821.
  31. L. Hu, J. Meegoda, J. Du, S. Gao, X. Wu, Centrifugal study of zone of influence during air-sparging, J. Environ. Monit., 13 (2011) 2443–2449.
  32. L. Hu, J. Meegoda, H. Li, J. Du, S. Gao, Study of flow transitions during air sparging using the geotechnical centrifuge, J. Environ. Eng., 141 (2015) 04014048-1–04014048-8. doi: 10.1061/(ASCE) EE.1943-7870.0000877
  33. Y. Ansari, G. Habibagahi, Modeling of LNAPL Spreading and Migration to Locate the Source and Fate of Oil Leaks, Presented at the 7th International Congress on Civil Engineering, Tehran, Iran, 2004.
  34. A. Vaezihir, M. Zare, E. Raeisi, J. Molson, J. Barker, Field-scale modeling of benzene, toluene, ethylbenzene, and xylenes (BTEX) released from multiple source zones, Biorem. J., 16 (2012) 156–176.
  35. M.M. Martinson, J.A. Linck, Field Pilot-Testing for Air Sparging of Hydrocarbon-Contaminated Groundwater, Proc. Sixteenth International Madison Waste Conference, University of Wisconsin-Madison, 1993.
  36. G. Mickelson, Guidance for Design, Installation and Operation of In-Situ Air Sparging Systems, Wisconsin Department of Natural Resources, Emergency and Remedial Response Section, Publication Number: PUBL-SW186-93, 1993.
  37. D.P. Ahlfeld, A. Dahmani, W. Ji, A conceptual model of field behavior of air sparging and its implications for application, Ground Water Monit. Remediat., 14 (1994) 132–139.