References

  1. J.J. Stumm, W. Morgan, Aquatic Chemistry, 2nd ed., New York: John Wiley & Sons, 1981.
  2. B. Dold, Basic concepts in environmental geochemistry of sulfidic mine-waste management, Waste Manage., 24 (2010) 173–198.
  3. D.W. Blowes, C.J. Ptacek, J.L. Jambor, C.J. Weisener, The Geochemistry of Acid Mine Drainage, H.D. Holland, K. Karl, Eds., Treatise on Geochemistry, Elsevier, Oxford, 2003, pp. 149–204.
  4. C.M. Neculita, G.J. Zagury, B. Bussiere, Passive treatment of acid mine drainage in bioreactors using sulphate-reducing bacteria: critical review and research needs, J. Environ. Qual., 36 (2007) 1–16.
  5. A.S. Sheoran, V. Sheoran, R.P. Choudhary, Bioremediation of acid-rock drainage by sulphate-reducing prokaryotes: a review, Minerals Eng., 23 (2010) 1073–1100.
  6. ITRC (Interstate Technology & Regulatory Council), Biochemical Reactors for Treating Mining- Influenced Water. BCR-1. Washington, DC. Interstate Technology & Regulatory Council, Biochemical Reactors for Mining-Influenced Waste Team, 2013, Available online at: http://www.itrcweb.org/bcr-1/
  7. K.R. Waybrant, D.W. Blowes, C.J. Ptacek, Selection of reactive mixtures for use in permebale reactive walls for treatment of mine drainage, Environ. Sci. Technol., 32 (1998) 1972–1979.
  8. O. Gibert, J. de Pablo, J.L. Cortina, C. Ayora, Chemical characterisation of natural organic substrates for biological mitigation of acid mine drainage, Water Res., 38 (2004) 4186–4196.
  9. C.A. McCauley, A.D. O’Sullivan, M.W. Milke, P.A. Weber, D.A. Trumm, Sulfate and metal removal in bioreactors treating acid mine drainage dominated with iron and aluminum, Water Res., 43 (2009) 961–970.
  10. M. Lindsay, C.J. Ptacek, D.W. Blowes, W.D. Gould, Zero-valent iron and organic carbon mixtures for remediation of acid mine drainage: batch experiments, Appl. Geochem., 23 (2008) 2214–2225.
  11. B. Uster, A.D. O’Sullivan, S.Y. Ko, A. Evans, J. Pope, D. Trumm, B. Caruso, The use of mussel shells in upward-flow sulfate-reducing bioreactors treating acid mine drainage, Mine Water Environ., 34 (2014) 442–454.
  12. L. Lefticariu, E.R. Walters, C.W. Pugh, K.S. Bender, Sulfate reducing bioreactor dependence on organic substrates for remediation of coal-generated acid mine drainage: field experiments, Appl. Geochem., 63 (2015) 70–82.
  13. V. Biermann, A.M. Lillicrap, C. Magana, B. Price, R.W. Bell, C.E. Oldham, Applicability of passive compost bioreactors for treatment of extremely acidic and saline waters in semi-arid climates, Water Res., 55 (2014) 83–94.
  14. M.V. Logan, K.F. Reardon, L.A. Figueroa, J.E.T. McLain, D.M. Ahmann, Microbial community activities during establishment, performance, and decline of bench-scale passive treatment systems for mine drainage, Water Res., 39 (2005) 4537–4551.
  15. R. Klein, J.S. Tischler, M. Mühling, M. Schlömann, Bioremediation of Mine Water, A. Schippers, F. Glombitza, W. Sand, Eds., Geobiotechnology I: Metal-related Issues, Springer Berlin Heidelberg, Berlin, 2014, pp. 109–172.
  16. J. Schmidtova, S.A. Baldwin, Correlation of bacterial communities supported by different organic materials with sulfate reduction in metal-rich landfill leachate, Water Res., 45 (2010) 1115–1128.
  17. R.S. Hedin, R.W. Nairn, R.L. Kleinmann, Passive Treatment of Coal Mine Drainage (Vol. 9389), US Department of the Interior, Bureau of Mines, Pittsburgh, PA, 1994, pp. 1–44.
  18. J.J. Gusek, L.A. Figueroa, Mitigation of Metal Mining Influenced Water, Littleton, CO, Vol. 2, SME, 2009.
  19. C.M. Neculita, J. Zagury, Biological treatment of highly contaminated acid mine drainage in batch reactors: long-term treatment and reactive mixture characterization, J. Hazard. Mater., 157 (2008) 358–366.
  20. A.O. Schwarz, B.E. Rittmann, Modeling bio-protection and the gradient-resistance mechanism, Biodegradation, 18 (2007) 693–701.
  21. A.O. Schwarz, B.E. Rittmann, The diffusion-active permeable reactive barrier, J. Contam. Hydrol., 112 (2010) 155–162.
  22. N.R. Pérez, I.C. Diaz, E. Barahona, A.O. Schwarz, H. Urrutia, Effect of Reactive Material Distribution in the Biological Treatment of Acid Mine Drainage, Proc. Enviromine 2011, Santiago de Chile, GECAMIN, Santiago.
  23. R.M. Atlas, Handbook of Media for Environmental Microbiology, CRC Press, Boca Raton, FL, 2005.
  24. S.G. Benner, W.D. Gould, D.W. Blowes, Microbial populations associated with the generation and treatment of acid mine drainage, Chem. Geol., 169 (2000) 435–448.
  25. A.E. Lewis, Review of metal sulphide precipitation, Hydrometallurgy, 104 (2010) 222–234.
  26. APHA, Standard Methods for the Examination of Water and Wastewater, 20th ed., American Water Works Association, Water Environment Federation, Washington, DC, USA, 2005, pp. 174, 175, 188, 189.
  27. C. Ayora, M.A. Caraballo, F. Macias, T.S. Rötting, J. Carrera, J.M. Nieto, Acid mine drainage in the Iberian Pyrite Belt: 2. Lessons learned from recent passive remediation experiences, Environ. Sci. Pollut. Res., 20 (2013) 7837–7853.
  28. T.R. Machemer, S.D. Reynolds, J.S. Laudon, L.S. Wildeman, Balance of S in a constructed wetland built to treat acid mine drainage, Idaho Springs, Colorado, USA, Appl. Geochem., 8 (1993) 587–603.
  29. J.W. Rudd, C.A. Kelly, A. Furutani, The role of sulfate reduction in longterm accumulation of organic and inorganic sulfur in lake sediments, Limnol. Oceanogr., 31 (1986) 1281–1291.
  30. S. Wu, P. Kuschk, A. Wiessner, J. Müller, R.A.B. Saad, R. Dong, Sulphur transformations in constructed wetlands for wastewater treatment: a review, Ecol. Eng., 52 (2013) 278–289.
  31. S. Wu, C. Jeschke, R. Dong, H. Paschke, P. Kuschk, K. Knöller, Sulfur transformations in pilot-scale constructed wetland treating high sulfate-containing contaminated groundwater: a stable isotope assessment, Water Res., 45 (2011) 6688–6698.
  32. H.L. Ehrlich, D.K. Newman, Geomicrobiology of Sulfur, Geomicrobiology, 5th ed., CRC Press, Boca Raton, FL, 2008, pp. 508–559.
  33. N. Gallagher, E. Blumenstein, T. Rutkowski, J. De Angelis, D. Reisman, C. Progess, R.J. Schipper, J.J. Gusek, Passive Treatment of Mining Influenced Wastewater with Biochemical Reactor Treatment at the Standard Mine Superfund Site, Crested Butte, Colorado, ASMR, Lexington, KY, 2012, pp. 137–153.
  34. G. Yim, S. Ji, Y. Cheong, C.M. Neculita, H. Song, The influences of the amount of organic substrate on the performance of pilot-scale passive bioreactors for acid mine drainage treatment, Environ. Earth Sci., 73 (2015) 4717–4727.
  35. M. Zhang, H. Wang, Organic wastes as carbon sources to promote sulfate reducing bacterial activity for biological remediation of acid mine drainage, Minerals Eng., 69 (2014) 81–90.
  36. P.T. Behum, L. Lefticariu, E. Walter, R. Kiser, Passive Treatment of Coal-mine Drainage by a Sulfate-reducing Bioreactor in the Illinois Coal Basin, Proceedings, West Virginia Mine Drainage Task Force Symposium, Morgantown, WV, 2013.
  37. S.P. Jung, Y. Cheong, G. Yim, S. Ji, H. Kang, Performance and bacterial communities of successive alkalinity-producing systems (SAPSs) in passive treatment processes treating mine drainages differing in acidity and metal levels, Environ. Sci. Pollut. Res., 21 (2014) 3722–3732.
  38. S.A. Yepez, R.W. Nairn, Nutrient and Sulfide Export from a Mine Drainage Passive treament System, Proc. National Meeting of the American Society of Mining and Reclamation, Tupelo, MS Sustainable Reclamation, 2012, pp. 539–556.
  39. E.P. Blumenstein, J.J. Gusek, Nuisance Constituents in Passive Water Treatment Systems – a Specific Case Study 1, Proc. Am. Soc. Mining Reclamation 27th Annual National Conference, Pittsburgh, PA, 2010, pp. 31–53.
  40. G. Chaparro, Sistema de Intercambio Difusivo Para el Tratamiento de Drenajes Ácidos con Elevadas Concentraciones de Cobre, Universidad de Concepción, 2015.
  41. D.K. Villa-Gomez, E.D. Van Hullebusch, R. Maestro, F. Farges, S. Nikitenko, H. Kramer, G. Gonzalez-Gil, P.N.L. Lens, Morphology, mineralogy, and solid-liquid phase separation characteristics of Cu and Zn precipitates produced with biogenic sulfide, Environ. Sci. Technol., 48 (2014) 664–673.
  42. D. Villa-Gomez, H. Ababneh, S. Papirio, D.P.L. Rousseau, P.N.L. Lens, Effect of sulfide concentration on the location of the metal precipitates in inversed fluidized bed reactors, J. Hazard. Mater., 192 (2011) 200–207.