References
- J.J. Stumm, W. Morgan, Aquatic Chemistry, 2nd ed., New York: John Wiley & Sons, 1981.
- B. Dold, Basic concepts in environmental geochemistry of sulfidic mine-waste management, Waste Manage., 24 (2010) 173–198.
- D.W. Blowes, C.J. Ptacek, J.L. Jambor, C.J. Weisener, The Geochemistry of Acid Mine Drainage, H.D. Holland, K. Karl, Eds., Treatise on Geochemistry, Elsevier, Oxford, 2003, pp. 149–204.
- C.M. Neculita, G.J. Zagury, B. Bussiere, Passive treatment of acid mine drainage in bioreactors using sulphate-reducing bacteria: critical review and research needs, J. Environ. Qual., 36 (2007) 1–16.
- A.S. Sheoran, V. Sheoran, R.P. Choudhary, Bioremediation of acid-rock drainage by sulphate-reducing prokaryotes: a review, Minerals Eng., 23 (2010) 1073–1100.
- ITRC (Interstate Technology & Regulatory Council), Biochemical Reactors for Treating Mining- Influenced Water. BCR-1. Washington, DC. Interstate Technology & Regulatory Council, Biochemical Reactors for Mining-Influenced Waste Team, 2013, Available online at: http://www.itrcweb.org/bcr-1/
- K.R. Waybrant, D.W. Blowes, C.J. Ptacek, Selection of reactive mixtures for use in permebale reactive walls for treatment of mine drainage, Environ. Sci. Technol., 32 (1998) 1972–1979.
- O. Gibert, J. de Pablo, J.L. Cortina, C. Ayora, Chemical characterisation of natural organic substrates for biological mitigation of acid mine drainage, Water Res., 38 (2004) 4186–4196.
- C.A. McCauley, A.D. O’Sullivan, M.W. Milke, P.A. Weber, D.A. Trumm, Sulfate and metal removal in bioreactors treating acid mine drainage dominated with iron and aluminum, Water Res., 43 (2009) 961–970.
- M. Lindsay, C.J. Ptacek, D.W. Blowes, W.D. Gould, Zero-valent iron and organic carbon mixtures for remediation of acid mine drainage: batch experiments, Appl. Geochem., 23 (2008) 2214–2225.
- B. Uster, A.D. O’Sullivan, S.Y. Ko, A. Evans, J. Pope, D. Trumm, B. Caruso, The use of mussel shells in upward-flow sulfate-reducing bioreactors treating acid mine drainage, Mine Water Environ., 34 (2014) 442–454.
- L. Lefticariu, E.R. Walters, C.W. Pugh, K.S. Bender, Sulfate reducing bioreactor dependence on organic substrates for remediation of coal-generated acid mine drainage: field experiments, Appl. Geochem., 63 (2015) 70–82.
- V. Biermann, A.M. Lillicrap, C. Magana, B. Price, R.W. Bell, C.E. Oldham, Applicability of passive compost bioreactors for treatment of extremely acidic and saline waters in semi-arid climates, Water Res., 55 (2014) 83–94.
- M.V. Logan, K.F. Reardon, L.A. Figueroa, J.E.T. McLain, D.M. Ahmann, Microbial community activities during establishment, performance, and decline of bench-scale passive treatment systems for mine drainage, Water Res., 39 (2005) 4537–4551.
- R. Klein, J.S. Tischler, M. Mühling, M. Schlömann, Bioremediation of Mine Water, A. Schippers, F. Glombitza, W. Sand, Eds., Geobiotechnology I: Metal-related Issues, Springer Berlin Heidelberg, Berlin, 2014, pp. 109–172.
- J. Schmidtova, S.A. Baldwin, Correlation of bacterial communities supported by different organic materials with sulfate reduction in metal-rich landfill leachate, Water Res., 45 (2010) 1115–1128.
- R.S. Hedin, R.W. Nairn, R.L. Kleinmann, Passive Treatment of Coal Mine Drainage (Vol. 9389), US Department of the Interior, Bureau of Mines, Pittsburgh, PA, 1994, pp. 1–44.
- J.J. Gusek, L.A. Figueroa, Mitigation of Metal Mining Influenced Water, Littleton, CO, Vol. 2, SME, 2009.
- C.M. Neculita, J. Zagury, Biological treatment of highly contaminated acid mine drainage in batch reactors: long-term treatment and reactive mixture characterization, J. Hazard. Mater., 157 (2008) 358–366.
- A.O. Schwarz, B.E. Rittmann, Modeling bio-protection and the gradient-resistance mechanism, Biodegradation, 18 (2007) 693–701.
- A.O. Schwarz, B.E. Rittmann, The diffusion-active permeable reactive barrier, J. Contam. Hydrol., 112 (2010) 155–162.
- N.R. Pérez, I.C. Diaz, E. Barahona, A.O. Schwarz, H. Urrutia, Effect of Reactive Material Distribution in the Biological Treatment of Acid Mine Drainage, Proc. Enviromine 2011, Santiago de Chile, GECAMIN, Santiago.
- R.M. Atlas, Handbook of Media for Environmental Microbiology, CRC Press, Boca Raton, FL, 2005.
- S.G. Benner, W.D. Gould, D.W. Blowes, Microbial populations associated with the generation and treatment of acid mine drainage, Chem. Geol., 169 (2000) 435–448.
- A.E. Lewis, Review of metal sulphide precipitation, Hydrometallurgy, 104 (2010) 222–234.
- APHA, Standard Methods for the Examination of Water and Wastewater, 20th ed., American Water Works Association, Water Environment Federation, Washington, DC, USA, 2005, pp. 174, 175, 188, 189.
- C. Ayora, M.A. Caraballo, F. Macias, T.S. Rötting, J. Carrera, J.M. Nieto, Acid mine drainage in the Iberian Pyrite Belt: 2. Lessons learned from recent passive remediation experiences, Environ. Sci. Pollut. Res., 20 (2013) 7837–7853.
- T.R. Machemer, S.D. Reynolds, J.S. Laudon, L.S. Wildeman, Balance of S in a constructed wetland built to treat acid mine drainage, Idaho Springs, Colorado, USA, Appl. Geochem., 8 (1993) 587–603.
- J.W. Rudd, C.A. Kelly, A. Furutani, The role of sulfate reduction in longterm accumulation of organic and inorganic sulfur in lake sediments, Limnol. Oceanogr., 31 (1986) 1281–1291.
- S. Wu, P. Kuschk, A. Wiessner, J. Müller, R.A.B. Saad, R. Dong, Sulphur transformations in constructed wetlands for wastewater treatment: a review, Ecol. Eng., 52 (2013) 278–289.
- S. Wu, C. Jeschke, R. Dong, H. Paschke, P. Kuschk, K. Knöller, Sulfur transformations in pilot-scale constructed wetland treating high sulfate-containing contaminated groundwater: a stable isotope assessment, Water Res., 45 (2011) 6688–6698.
- H.L. Ehrlich, D.K. Newman, Geomicrobiology of Sulfur, Geomicrobiology, 5th ed., CRC Press, Boca Raton, FL, 2008, pp. 508–559.
- N. Gallagher, E. Blumenstein, T. Rutkowski, J. De Angelis, D. Reisman, C. Progess, R.J. Schipper, J.J. Gusek, Passive Treatment of Mining Influenced Wastewater with Biochemical Reactor Treatment at the Standard Mine Superfund Site, Crested Butte, Colorado, ASMR, Lexington, KY, 2012, pp. 137–153.
- G. Yim, S. Ji, Y. Cheong, C.M. Neculita, H. Song, The influences of the amount of organic substrate on the performance of pilot-scale passive bioreactors for acid mine drainage treatment, Environ. Earth Sci., 73 (2015) 4717–4727.
- M. Zhang, H. Wang, Organic wastes as carbon sources to promote sulfate reducing bacterial activity for biological remediation of acid mine drainage, Minerals Eng., 69 (2014) 81–90.
- P.T. Behum, L. Lefticariu, E. Walter, R. Kiser, Passive Treatment of Coal-mine Drainage by a Sulfate-reducing Bioreactor in the Illinois Coal Basin, Proceedings, West Virginia Mine Drainage Task Force Symposium, Morgantown, WV, 2013.
- S.P. Jung, Y. Cheong, G. Yim, S. Ji, H. Kang, Performance and bacterial communities of successive alkalinity-producing systems (SAPSs) in passive treatment processes treating mine drainages differing in acidity and metal levels, Environ. Sci. Pollut. Res., 21 (2014) 3722–3732.
- S.A. Yepez, R.W. Nairn, Nutrient and Sulfide Export from a Mine Drainage Passive treament System, Proc. National Meeting of the American Society of Mining and Reclamation, Tupelo, MS Sustainable Reclamation, 2012, pp. 539–556.
- E.P. Blumenstein, J.J. Gusek, Nuisance Constituents in Passive Water Treatment Systems – a Specific Case Study 1, Proc. Am. Soc. Mining Reclamation 27th Annual National Conference, Pittsburgh, PA, 2010, pp. 31–53.
- G. Chaparro, Sistema de Intercambio Difusivo Para el Tratamiento de Drenajes Ácidos con Elevadas Concentraciones de Cobre, Universidad de Concepción, 2015.
- D.K. Villa-Gomez, E.D. Van Hullebusch, R. Maestro, F. Farges, S. Nikitenko, H. Kramer, G. Gonzalez-Gil, P.N.L. Lens, Morphology, mineralogy, and solid-liquid phase separation characteristics of Cu and Zn precipitates produced with biogenic sulfide, Environ. Sci. Technol., 48 (2014) 664–673.
- D. Villa-Gomez, H. Ababneh, S. Papirio, D.P.L. Rousseau, P.N.L. Lens, Effect of sulfide concentration on the location of the metal precipitates in inversed fluidized bed reactors, J. Hazard. Mater., 192 (2011) 200–207.