References
- N.C. Muller, B. Burgen, V. Kueter, P. Luis, T. Melin, W. Pronk,
R. Reseiwitz, D. Rickerby, G.M. Rios, W. Wennekes, B. Nowack,
Nanofiltration and nanostructured membranes - should they be
considered nanotechnology or not? J. Hazard. Mater., 211–212
(2012) 275–280.
- M. Sadeghi, M.A. Semsarzadeh, H. Moadel, Enhancement of
the gas separation properties of polybenzimidazole (PBI) membrane
by incorporation of silica nano particles, J. Membr. Sci.,
331 (2009) 21–30.
- J. Hong, Y. He, Effects of nano sized zinc oxide on the performance
of PVDF microfiltration membranes, Desalination,
302 (2012) 71–79.
- A. Nicolai, B.G. Sumpterb, V. Meuniera, Tunable water desalination
across graphene oxide framework, J. Phys. Chem., 16
(2014) 8646–8654.
- R.K. Joshi, P. Carbone, F.C. Wang, V.G. Krevets, Y. Su, I.V. Grigorieva,
H.A. Wu, A.K. Geim, R.R. Nair, Precise and ultrafast
molecular sieving trough graphene oxide membranes, Science,
343 (2014) 752–754.
- P. Sun, M. Zhu, K. Wang, M. Zhong, J. Wei, D. Wu, Z. Xu, H.
Zhu, Selective ion penetration of graphene oxide membranes,
Nano, 22 (2013) 428–37.
- J.K. Holt, H.G. Park, Y. Wang, M. Stadermann, A.B. Artyukhin,
C.P. Grigoropoulos, A. Noy, O. Bakajin, Fast mass transport
through sub-2-nanometer carbon nanotubes, Science, 312 (2006)
1034–1037.
- M. Majumder, N. Chopra, B.J. Hinds, Mass transport through
carbon nanotube membranes in three different regimes:
ionic diffusion and gas and liquid flow, ACS Nano, 5 (2011)
3867–3877.
- X. Qin, Q. Yuan, Y. Zhao, S. Xie, Z. Liu, Measurement of the rate
of water translocation through carbon nanotubes, Nano Lett.,
11 (2011) 2173–20177.
- J.A. Thomas, A.J.H. McGaughey, Water flow in carbon nanotubes:
transition to subcontinuum transport, Phys. Rev. Lett.,
102 (2009) 184502-1–184502-4.
- S. Majeed, D. Fierro, K. Buhr, J. Wind, B. Du, A. Boschetti-de-Fierro,
V. Abetz, Multi-walled carbon nanotubes (MWCNTs)
mixed polyacrylonitrile (PAN) ultrafiltration membranes,
J. Membr. Sci., 403–404 (2012) 101–109.
- H. Wu, B. Tang, P. Wu, Novel ultrafiltration membranes
prepared from a multi-walled carbon nanotubes/polymer
composite,
J. Membr. Sci., 362 (2012) 374–383.
- J.K. Holt, H.J. Park, Y. Wang, M. Stadermann, A.B. Artyukhin,
C.P. Grigoropoulos, A. Noy1, O. Bakajin, Fast mass transport
through sub-2-nanometer carbon nanotubes, Science, 312 (2006)
1034–1037.
- E.-S. Kim, G. Hwang, M.G. El-Di, Y. Liu, Development of nanosilver
and multi-walled carbon nanotubes thin-film nanocomposite
membrane for enhanced water treatment, J. Membr. Sci.,
394–395 (2012) 37–48.
- H. Jin, Y. Huang, X. Wang, P. Yu, Y. Luo, Preparation of modified
cellulose acetate membranes using functionalized multiwalled
carbon nanotubes for forward osmosis, Desal. Water
Treat., 57 (2016) 7166–7174.
- W. Kujawski, P. Adamczak, A. Narębska, A fully automated
system for the determination of pore size distribution
in microfiltration
and ultrafiltration membranes, Sep. Sci.
Technol.,
24 (1989) 495–506.
- B. Tylkowski, I. Tsibranska, Overview of main techniques used
for membrane characterization, J. Chem. Technol. Metall.,
50 (2015) 3–12.
- Standard Test Method for Pore Size Characteristics of Membrane
Filters by Bubble Point and Mean Flow Pore Test, ASTM
International, West Conshohocken, PA, F316 – 03, 2011.
- N. Ashraf, Carbon Nanotubes-Cellulose Acetate Nanocomposites
Membranes for Water Desalination, The American University
in Cairo, Department of Chemistry–Dissertation, 2012.
- E. Saljoughi, M. Sadrzadeh, T. Mohammadi, Effect of preparation
variables on morphology and pure water permeation flux
through asymmetric cellulose acetate membranes, J. Membr.
Sci., 326 (2009) 627–634.