References

  1. N.C. Muller, B. Burgen, V. Kueter, P. Luis, T. Melin, W. Pronk, R. Reseiwitz, D. Rickerby, G.M. Rios, W. Wennekes, B. Nowack, Nanofiltration and nanostructured membranes - should they be considered nanotechnology or not? J. Hazard. Mater., 211–212 (2012) 275–280.
  2. M. Sadeghi, M.A. Semsarzadeh, H. Moadel, Enhancement of the gas separation properties of polybenzimidazole (PBI) membrane by incorporation of silica nano particles, J. Membr. Sci., 331 (2009) 21–30.
  3. J. Hong, Y. He, Effects of nano sized zinc oxide on the performance of PVDF microfiltration membranes, Desalination, 302 (2012) 71–79.
  4. A. Nicolai, B.G. Sumpterb, V. Meuniera, Tunable water desalination across graphene oxide framework, J. Phys. Chem., 16 (2014) 8646–8654.
  5. R.K. Joshi, P. Carbone, F.C. Wang, V.G. Krevets, Y. Su, I.V. Grigorieva, H.A. Wu, A.K. Geim, R.R. Nair, Precise and ultrafast molecular sieving trough graphene oxide membranes, Science, 343 (2014) 752–754.
  6. P. Sun, M. Zhu, K. Wang, M. Zhong, J. Wei, D. Wu, Z. Xu, H. Zhu, Selective ion penetration of graphene oxide membranes, Nano, 22 (2013) 428–37.
  7. J.K. Holt, H.G. Park, Y. Wang, M. Stadermann, A.B. Artyukhin, C.P. Grigoropoulos, A. Noy, O. Bakajin, Fast mass transport through sub-2-nanometer carbon nanotubes, Science, 312 (2006) 1034–1037.
  8. M. Majumder, N. Chopra, B.J. Hinds, Mass transport through carbon nanotube membranes in three different regimes: ionic diffusion and gas and liquid flow, ACS Nano, 5 (2011) 3867–3877.
  9. X. Qin, Q. Yuan, Y. Zhao, S. Xie, Z. Liu, Measurement of the rate of water translocation through carbon nanotubes, Nano Lett., 11 (2011) 2173–20177.
  10. J.A. Thomas, A.J.H. McGaughey, Water flow in carbon nanotubes: transition to subcontinuum transport, Phys. Rev. Lett., 102 (2009) 184502-1–184502-4.
  11. S. Majeed, D. Fierro, K. Buhr, J. Wind, B. Du, A. Boschetti-de-Fierro, V. Abetz, Multi-walled carbon nanotubes (MWCNTs) mixed polyacrylonitrile (PAN) ultrafiltration membranes, J. Membr. Sci., 403–404 (2012) 101–109.
  12. H. Wu, B. Tang, P. Wu, Novel ultrafiltration membranes prepared from a multi-walled carbon nanotubes/polymer composite, J. Membr. Sci., 362 (2012) 374–383.
  13. J.K. Holt, H.J. Park, Y. Wang, M. Stadermann, A.B. Artyukhin, C.P. Grigoropoulos, A. Noy1, O. Bakajin, Fast mass transport through sub-2-nanometer carbon nanotubes, Science, 312 (2006) 1034–1037.
  14. E.-S. Kim, G. Hwang, M.G. El-Di, Y. Liu, Development of nanosilver and multi-walled carbon nanotubes thin-film nanocomposite membrane for enhanced water treatment, J. Membr. Sci., 394–395 (2012) 37–48.
  15. H. Jin, Y. Huang, X. Wang, P. Yu, Y. Luo, Preparation of modified cellulose acetate membranes using functionalized multiwalled carbon nanotubes for forward osmosis, Desal. Water Treat., 57 (2016) 7166–7174.
  16. W. Kujawski, P. Adamczak, A. Narębska, A fully automated system for the determination of pore size distribution in microfiltration and ultrafiltration membranes, Sep. Sci. Technol., 24 (1989) 495–506.
  17. B. Tylkowski, I. Tsibranska, Overview of main techniques used for membrane characterization, J. Chem. Technol. Metall., 50 (2015) 3–12.
  18. Standard Test Method for Pore Size Characteristics of Membrane Filters by Bubble Point and Mean Flow Pore Test, ASTM International, West Conshohocken, PA, F316 – 03, 2011.
  19. N. Ashraf, Carbon Nanotubes-Cellulose Acetate Nanocomposites Membranes for Water Desalination, The American University in Cairo, Department of Chemistry–Dissertation, 2012.
  20. E. Saljoughi, M. Sadrzadeh, T. Mohammadi, Effect of preparation variables on morphology and pure water permeation flux through asymmetric cellulose acetate membranes, J. Membr. Sci., 326 (2009) 627–634.