References

  1. B. Cuartas-Uribe, A. Iborra-Clar, A. Bes-Piá, J.A. Mendoza-Roca, M.V. Galiana-Aleixandre, M.I. Iborra-Clar, Nanofiltration of a simulated tannery wastewater: influence of chlorides concentration, Desalination, 191 (2006) 132–136.
  2. P. Religa, A. Kowalik, P. Gierycz, Effect of membrane properties on chromium(III) recirculation from concentrate salt mixture solution by nanofiltration, Desalination, 274 (2011) 164–170.
  3. P. Religa, A. Kowalik, P. Gierycz, Application of nanofiltration for chromium concentration in the tannery wastewater, J. Hazard. Mater., 186 (2011) 288–292.
  4. P. Religa, A. Kowalik, P. Gierycz, A new approach to chromium concentration from salt mixture solution using nanofiltration, Sep. Purif. Technol., 82 (2011) 114–120.
  5. A. Cassano, L. Della Pietra, E. Drioli, Integrated membrane process for the recovery of chromium salts from tannery effluents, Ind. Eng. Chem. Res., 46 (2007) 6825–6830.
  6. A. Cassano, R. Molinari, M. Romano, E. Drioli, Treatment of aqueous effluents of the leather industry by membrane processes a review, J. Membr. Sci., 181 (2001) 111–126.
  7. A. Cassano, J. Adzet, R. Molinari, M.G. Buonomenna, J. Roig, E. Drioli, Membrane treatment by nanofiltration of exhausted vegetable tannin liquors from the leather industry, Water Res., 37 (2003) 2426–2434.
  8. L. Wang, Z. Yang, L. Wang, R. Zhu, Minimizing the operation time for continuous feed diafiltration processes under constant concentration ratio, Desalination, 346 (2014) 100–106.
  9. M. Jelemenskỳ, R. Paulen, M. Fikar, Z. Kovács, Time-optimal operation of multi-component batch diafiltration, Comp. Chem. Eng., 83 (2015) 131–138.
  10. L. Wang, G. Yang, W. Xing, N. Xu, Mathematic model of the yield for diafiltration processes, Sep. Purif. Technol., 59 (2008) 206–213.
  11. M. Fikar, Z. Kovacs, P. Czermak, Dynamic optimization of batch diafiltration processes, J. Membr. Sci., 355 (2010) 168–174.
  12. R. Paulen, M. Fikar, G. Foley, Z. Kovàcs, P. Czermak, Optimal feeding strategy of diafiltration buffer in batch membrane processes, J. Membr. Sci., 411–412 (2012) 160–172.
  13. Z. Kovàcs, M. Fikar, P. Czermak, Mathematical modeling of diafiltration, Hung. J. Indus. Chem., 37 2009 159–164.
  14. R. Paulen, M. Jelemenskỳ, Z. Kovács, M. Fikar, Economically optimal batch diafiltration via analytical multi–objective optimal control, J. Process Control., 28 (2015) 73–82.
  15. M. Xie, Y. Xu, Partial desalination and concentration of glyphosate liquor by nanofiltration, J. Hazard. Mater., 186 (2011) 960–964.
  16. Z. Zhang, R. Yang, S. Zhang, H. Zhao, X. Hua, Purification of lactulose syrup by using nanofiltration in a diafiltration mode, J. Food Eng., 105 (2011) 112–118.
  17. A. Al–Amoudi, P. Williams, S. Mandale, R.W. Lovitt, Cleaning results of new and fouled nanofiltration membrane characterized by zeta potential and permeability, Sep. Purif. Technol., 54 (2007) 234–240.
  18. M. Mänttäri, A. Pihlajamäki, M. Nyström, Effect of pH on hydrophilicity and charge and their effect on the filtration efficiency of NF membranes at different pH, J. Membr. Sci., 280 (2006) 311–320.
  19. A.W. Mohammad, Y.H. Teow, W.L. Ang, Y.T. Chung, D.L. Oatley-Radcliffe, N. Hilal, Nanofiltration membranes review: Recent advances and future prospects, Desalination, 356 (2015) 226–254.
  20. M. Bodzek, J. Bohdziewicz, K. Konieczny, Membrane Techniques in Environmental Protection, Publisher the Silesian Technical University, Gliwice, 1997.
  21. S. Gomes, S.A. Cavaco, M.J. Quina, L.M. Gando–Ferreira, Nanofiltration process for separating Cr(III) from acid solutions: experimental and modelling analysis, Desalination, 254 (2010) 80–89.