References

  1. M.M. Ling, K.Y. Wang, T.S. Chung, Highly water-soluble magnetic nanoparticles as novel draw solutes in forward osmosis for water reuse, Ind. Eng. Chem. Res., 49 (2010) 5869–5876.
  2. T.S. Chung, S. Zhang, K.Y. Wang, J. Su, M.M. Ling, Forward osmosis processes: yesterday, today and tomorrow, Desalination, 287 (2012) 78–81.
  3. D. Li, H. Wang, Smart draw agents for emerging forward osmosis application, J. Mater. Chem. A., 1 (2013) 14049–14060.
  4. A. Razmjou, G. Simon, H. Wang, Polymer Hydrogels as Smart Draw Agents in Forward Osmosis Processes, Forward Osmosis: Fundamentals and Applications, American Society of Civil Engineers (ASCE), USA, 2015, pp. 129–149.
  5. M.M. Ling, T.S. Chung, Desalination process using super hydrophilic nanoparticles via forward osmosis integrated with ultrafiltration regeneration, Desalination, 278 (2011) 194–202.
  6. K.B. Petrotos, P.C. Quantick, H. Petropakis, Direct osmotic concentration of tomato juice in tubular membrane – module configuration. II. The effect of using clarified tomato juice on the process performance, J. Membr. Sci., 160 (1999) 171–177.
  7. M.M. Ling, T.S. Chung, Novel dual-stage FO system for sustainable protein enrichment using nanoparticles as intermediate draw solutes, J. Membr. Sci., 372 (2011) 201–209.
  8. H.M. Yang, K.W. Lee, J.K. Moon, Synthesis of Magnetic Nanoparticles as a Draw Solute in Forward Osmosis Membrane Process for the Treatment of Radioactive Liquid Waste, Transactions of the Korean Nuclear Society Spring Meeting, Gwangju, 2013.
  9. H. Lodish, A. Berk, S.L. Zipursky, P. Matsudaira, D. Baltimore, J. Darnell, Molecular Cell Biology, 4th ed., Scientific American Books, New York, 2000.
  10. Q. Ge, M. Ling, T.S. Chung, Draw solutions for forward osmosis processes: developments, challenges, and prospects for the future, J. Membr. Sci., 442 (2013) 225–237.
  11. A. Razmjou, G.P. Simon, H. Wang, Effect of particle size on the performance of forward osmosis desalination by stimuli-responsive polymer hydrogels as a draw agent, Chem. Eng. J., 215 (2013) 913–920.
  12. B. Van der Bruggen, P. Luis, Forward osmosis: understanding the hype, Rev. Chem. Eng., 31 (2015) 1–12.
  13. A. Razmjou, M.R. Barati, G.P. Simon, K. Suzuki, H. Wang, Fast deswelling of nanocomposite polymer hydrogels via magnetic field-induced heating for emerging FO desalination, Environ. Sci. Technol., 47 (2013) 6297–6305.
  14. L. Chekli, S. Phuntsho, H.K. Shon, S. Vigneswaran, J. Kandasamy, A. Chanan, A review of draw solutes in forward osmosis process and their use in modern applications, Desal. Wat. Treat., 43 (2012) 167–184.
  15. Y. Na, S. Yang, S. Lee, Evaluation of citrate-coated magnetic nanoparticles as draw solute for forward osmosis, Desalination, 347 (2014) 34–42.
  16. L. Liu, S. Adham, J. Oppenheimer, M. Kumar, Dewatering Reverse Osmosis Concentrate Using Forward Osmosis, Proc. Membrane Technology Conference & Exposition, 2007.
  17. H. Bai, L. Zhaoyang, D.D. Sun, Highly water soluble and recovered dextran coated Fe3O4 magnetic nanoparticles for brackish water desalination, Sep. Purif. Technol., 81 (2011) 392–399.
  18. Q. Ge, J. Su, T.S. Chung, G. Amy, Hydrophilic superparamagnetic nanoparticles: synthesis, characterization, and performance in forward osmosis processes, Ind. Eng. Chem. Res., 50 (2011) 382–388.
  19. A. Zhou, H. Luo, Q. Wang, L. Chen, T.C. Zhang, T. Tao, Magnetic thermoresponsive ionic nanogels as novel draw agents in forward osmosis, RSC Adv., 5 (2015) 15359–15365.
  20. D. Zhao, S. Chen, P. Wang, Q. Zhao, X. Lu, A dendrimer-based forward osmosis draw solute for seawater desalination, Ind. Eng. Chem. Res., 53 (2014) 16170–16175.
  21. J. Wang, G. Meng, K. Tao, M. Feng, X. Zhao, Z. Li, H. Xu, D. Xia, J.R. Lu, Immobilization of lipases on alkyl silane modified magnetic nanoparticles: effect of alkyl chain length on enzyme activity, PLoS One, 7 (2012) e43478.
  22. E. Ranjbakhsh, A.K. Bordbar, M. Abbasi, A.R. Khosropour, E. Shams, Enhancement of stability and catalytic activity of immobilized lipase on silica-coated modified magnetite nanoparticles, Chem. Eng. J., 179 (2012) 272–276.
  23. L. Zhou, C. Gao, W. Xu, Robust Fe3O4/SiO2-Pt/Au/Pd magnetic nanocatalysts with multifunctional hyperbranched polyglycerol amplifiers, Langmuir, 26 (2010) 11217–11225.
  24. X. Hu, L. Zhou, C. Gao, Hyperbranched polymers meet colloid nanocrystals: a promising avenue to multifunctional, robust nanohybrids, Colloid Polym. Sci., 289 (2011) 1299–1320.
  25. M. Darroudi, M. Hakimi, E. Goodarzi, R. Kazemi Oskuee, Superparamagnetic iron oxide nanoparticles (SPIONs): green preparation, characterization and their cytotoxicity effects, Ceram. Int., 40 (2014) 14641–14645.
  26. A. Razmjou, J. Mansouri, V. Chen, The effects of mechanical and chemical modification of TiO2 nanoparticles on the surface chemistry, structure and fouling performance of PES ultrafiltration membranes, J. Membr. Sci., 378 (2011) 73–84.
  27. T.F. Tadros, Rheology of Dispersions: Principles and Applications, John Wiley & Sons, Germany, 2011.
  28. S.J. Fritz, Ideality of clay membranes in osmotic processes: a review, Clays Clay Miner., 34 (1986) 214–223.
  29. D. Li, X. Zhang, J. Yao, G.P. Simon, H. Wang, Stimuli-responsive polymer hydrogels as a new class of draw agent for forward osmosis desalination, Chem. Commun., 47 (2011) 1710–1712.
  30. N.T. Hancock, T.Y. Cath, Solute coupled diffusion in osmotically driven membrane processes, Environ. Sci. Technol., 43 (2009) 6769–6775.