References

  1. K. Shubha, C. Raji, T. Anirudhan, Immobilization of heavy metals from aqueous solutions using polyacrylamide grafted hydrous tin (IV) oxide gel having carboxylate functional groups, Water Res., 35 (2001) 300–310.
  2. M.H. Habibi, M. Fakhrpor, Preparation of cerium zinc oxide nanocomposite derived by hydrothermal route coated on glass and its application in water treatment, Desal. Wat. Treat., 57 (2016) 26204–26210.
  3. X. Guo, Q. Wei, B. Du, Y. Zhang, X. Xin, L. Yan, H. Yu, Removal of basic dyes (malachite green) from aqueous medium by adsorption onto amino functionalized graphenes in batch mode, Desal. Wat. Treat., 53 (2015) 818–825.
  4. M. Sheibani, M. Ghaedi, F. Marahel, A. Ansari, Congo red removal using oxidized multiwalled carbon nanotubes: kinetic and isotherm study, Desal. Wat. Treat., 53 (2015) 844–852.
  5. F. Marahel, M.A. Khan, E. Marahel, I. Bayesti, S. Hosseini, Kinetics, thermodynamics, and isotherm studies for the adsorption of BR2 dye onto avocado integument, Desal. Wat. Treat., 53 (2015) 826–835.
  6. N.K. Singh, S. Saha, A. Pal, Solar light-induced photocatalytic degradation of methyl red in an aqueous suspension of commercial ZnO: a green approach, Desal. Wat. Treat., 53 (2015) 501–514.
  7. A. Rodríguez, J. García, G. Ovejero, M. Mestanza, Adsorption of anionic and cationic dyes on activated carbon from aqueous solutions: equilibrium and kinetics, J. Hazard. Mater., 172 (2009) 1311–1320.
  8. A. Bhatnagar, A. Jain, A comparative adsorption study with different industrial wastes as adsorbents for the removal of cationic dyes from water, J. Colloid Interface Sci., 281 (2005) 49–55.
  9. Q. Wang, W. Gao, Y. Liu, J. Yuan, Z. Xu, Q. Zeng, Y. Li, M. Schröder, Simultaneous adsorption of Cu(II) and SO42− ions by a novel silica gel functionalized with a ditopic zwitterionic Schiff base ligand, Chem. Eng. J., 250 (2014) 55–65.
  10. F. Hashem, M. Amin, S. El-Gamal, Chemical activation of vermiculite to produce highly efficient material for Pb2+ and Cd2+ removal, Appl. Clay Sci., 115 (2015) 189–200.
  11. K.S. Shabani, F.D. Ardejani, K. Badii, M.E. Olya, Acid mine drainage treatment by perlite nanomineral, batch and continuous systems, Arch. Min. Sci., 59 (2014) 107–122.
  12. N. Karimi, M.A. Mohammadifar, Role of water soluble and water swellable fractions of gum tragacanth on stability and characteristic of model oil in water emulsion, Food Hydrocolloids, 37 (2014) 124–133.
  13. V. Kumar, P. Vikas, R. Kumar, B. Kumar, M. Kaur, Low cost natural polysaccharide and vinyl monomer based IPN for the removal of crude oil from water, J. Petrol. Sci. Eng., 141 (2016) 1–8.
  14. A. Yokoyama, K.R. Srinivasan, H.S. Fogler, Stabilization mechanism of colloidal suspensions by gum tragacanth: the influence of pH on stability, J. Colloid Interface Sci., 126 (1988) 141–149.
  15. S. Ghayempour, M. Montazer, M.M. Rad, Tragacanth gum as a natural polymeric wall for producing antimicrobial nanocapsules loaded with plant extract, Int. J. Biol. Macromol., 81 (2015) 514–520.
  16. M. Ranjbar-Mohammadi, S.H. Bahrami, M. Joghataei, Fabrication of novel nanofiber scaffolds from gum tragacanth/ poly (vinyl alcohol) for wound dressing application: in vitro evaluation and antibacterial properties, Mat. Sci. Eng., C, 33 (2013) 4935–4943.
  17. Y. Bulut, A. Gül, Z. Baysal, H. Alkan, Adsorption of Ni(II) from aqueous solution by Bacillus subtilis, Desal. Wat. Treat., 49 (2012) 74–80.
  18. Y. Göksungur, S. Üren, U. Güvenç, Biosorption of cadmium and lead ions by ethanol treated waste baker’s yeast biomass, Bioresour. Technol., 96 (2005) 103–109.
  19. F. Çolak, N. Atar, D. Yazıcıoğlu, A. Olgun, Biosorption of lead from aqueous solutions by Bacillus strains possessing heavymetal resistance, Chem. Eng. J., 173 (2011) 422–428.
  20. L.M. He, B.M. Tebo, Surface charge properties of and Cu (II) adsorption by spores of the marine Bacillus sp. strain SG-1, Appl. Environ. Microbiol., 64 (1998) 1123–1129.
  21. F. Masood, A. Malik, Biosorption of metal ions from aqueous solution and tannery effluent by Bacillus sp. FM1, J. Environ. Sci. Health., Part A, 46 (2011) 1667–1674.
  22. Y. Şahin, A. Öztürk, Biosorption of chromium(VI) ions from aqueous solution by the bacterium Bacillus thuringiensis, Process Biochem., 40 (2005) 1895–1901.
  23. M. Sára, D. Pum, U. Sleytr, Permeability and charge-dependent adsorption properties of the S-layer lattice from Bacillus coagulans E38-66, J. Bacteriol., 174 (1992) 3487–3493.
  24. X. Zhou, X. Jiao, Polymerase chain reaction detection of Listeria monocytogenes using oligonucleotide primers targeting actA gene, Food Control, 16 (2005) 125–130.
  25. O.-S. Kim, Y.-J. Cho, K. Lee, S.-H. Yoon, M. Kim, H. Na, S.-C. Park, Y.S. Jeon, J.-H. Lee, H. Yi, Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species, Int. J. Syst. Evol. Microbiol., 62 (2012) 716–721.
  26. K. Tamura, G. Stecher, D. Peterson, A. Filipski, S. Kumar, MEGA6: molecular evolutionary genetics analysis version 6.0, Mol. Biol. Evol., 30 (2013) 2725–2729.
  27. N. Gholampoor, G. Emtiazi, Z. Emami, The influence of Microbacterium hominis and Bacillus licheniformis extracellular polymers on silver and iron oxide nanoparticles production; green biosynthesis and mechanism of bacterial nano production, J. Nanomater. Mol. Nanotechnol., 6 (2015) 1–6.
  28. D. Stafford, The effect of phenols and heterocyclic bases on nitrification in activated sludges, J. Appl. Bacteriol., 37 (1974) 75–82.
  29. L. Nakamura, Taxonomic relationship of black-pigmented Bacillus subtilis strains and a proposal for Bacillus atrophaeus sp. nov., Int. J. Syst. Evol. Microbiol., 39 (1989) 295–300.
  30. S.R. Sella, L.P. Vandenberghe, C.R. Soccol, Bacillus atrophaeus: main characteristics and biotechnological applications–a review, Crit. Rev. Biotechnol., 35 (2015) 533–545.
  31. R. Davis, L. Mauer, Fourier Transform Infrared (FT-IR) Spectroscopy: A Rapid Tool for Detection and Analysis of Foodborne Pathogenic Bacteria, Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology, Vol. 2, 2010, pp. 1582–1594.
  32. S. Raveendran, B. Dhandayuthapani, Y. Nagaoka, Y. Yoshida, T. Maekawa, D.S. Kumar, Biocompatible nanofibers based on extremophilic bacterial polysaccharide, Mauran from Halomonas maura, Carbohydr. Polym., 92 (2013) 1225–1233.
  33. C.A. Tischer, M. Iacomini, P.A.J. Gorin, Structure of the arabinogalactan from gum tragacanth (Astralagus gummifer), Carbohydr. Polym., 337 (2002) 1647–1655.
  34. M.J. Zohuriaan, F. Shokrolahi, Thermal studies on natural and modified gums, Polym. Test., 23 (2004) 575–579.
  35. F. Chenlo, R. Moreira, C. Silva, Rheological behaviour of aqueous systems of tragacanth and guar gums with storage time, J. Food Eng., 96 (2010) 107–113.
  36. S.J.J. Debon, R.F. Tester, In vitro binding of calcium, iron and zinc by non-starch polysaccharides, Food Chem., 73 (2001) 401–410.
  37. M. Farzi, M.S. Yarmand, M. Safari, Z. Emam-Djomeh, M.A. Mohammadifar, Gum tragacanth dispersions: particle size and rheological properties affected by high-shear homogenization, Int. J. Biol. Macromol., 79 (2015) 433–439.
  38. L.C.M. Das Neves, K.S. De Oliveira, M.J. Kobayashi, T.C.V. Penna, A. Converti, Biosurfactant production by cultivation of Bacillus atrophaeus ATCC 9372 in semidefined glucose/casein-based media, Appl. Biochem. Biotechnol., 137–140 (2007) 539– 554.
  39. S.S. Shelar, S.S. Warang, S.P. Mane, R.L. Sutar, J.S. Ghosh, Characterization of bacteriocin produced by Bacillus atrophaeus strain JS-2, Int. J. Biol. Chem., 6 (2012) 10–16.
  40. X. Zhang, B. Li, Y. Wang, Q. Guo, X. Lu, S. Li, P. Ma, Lipopeptides, a novel protein, and volatile compounds contribute to the antifungal activity of the biocontrol agent Bacillus atrophaeus CAB- 1, Appl. Microbiol. Biotechnol., 97 (2013) 9525–9534.
  41. A. Matin, Z. Khan, S. Zaidi, M. Boyce, Biofouling in reverse osmosis membranes for seawater desalination: phenomena and prevention, Desalination, 281 (2011) 1–16.
  42. T. Stein, S. Düsterhus, A. Stroh, K.-D. Entian, Subtilosin production by two Bacillus subtilis subspecies and variance of the sboalb cluster, Appl. Environ. Microbiol., 70 (2004) 2349–2353.
  43. F. Liu, W. Sun, F. Su, K. Zhou, Z. Li, Draft genome sequence of the sponge-associated strain Bacillus atrophaeus C89, a potential producer of marine drugs, J. Bacteriol., 194 (2012) 4454–4454.
  44. J. Hill, Silica gel as an insoluble carrier for the preparation of selective chromatographic adsorbents: the preparation of 8-hydroxyquinonline substituted silica gel for the chelation chromatography of some trace metals, J. Chromatogr., A, 76 (1973) 455–458.
  45. X. Yu, C. Wei, H. Wu, Effect of molecular structure on the adsorption behavior of cationic dyes onto natural vermiculite, Sep. Purif. Technol., 156 (2015) 489–495.
  46. N. Sakairi, S. Suzuki, K. Ueno, S.-M. Han, N. Nishi, S. Tokura, Biosynthesis of hetero-polysaccharides by Acetobacter xylinum-synthesis and characterization of metal-ion adsorptive properties of partially carboxymethylated cellulose, Carbohydr. Polym., 37 (1998) 409–414.
  47. P. Calvini, M. Silveira, FTIR analysis of naturally aged FeCl3 and CuCl2-doped cellulose papers, e-Preserv.Sci., 5 (2008) 1–6.
  48. M. Aryal, M. Liakopoulou-Kyriakides, Binding mechanism and biosorption characteristics of Fe(III) by Pseudomonas sp. cells, J. Water Sustainability, 3 (2013) 117–131.
  49. F.A. Miller, C.H. Wilkins, Infrared spectra and characteristic frequencies of inorganic ions, Anal. Chem., 24 (1952) 1253–1294.
  50. E. Eren, B. Afsin, An investigation of Cu(II) adsorption by raw and acid-activated bentonite: a combined potentiometric, thermodynamic, XRD, IR, DTA study, J. Hazard. Mater., 151 (2008) 682–691.
  51. I. Gamo, Infrared spectra of water of crystallization in some inorganic chlorides and sulfates, Bull. Chem. Soc. Jpn., 34 (1961) 760–764.
  52. A. Ayla, A. Çavuş, Y. Bulut, Z. Baysal, C. Aytekin, Removal of methylene blue from aqueous solutions onto Bacillus subtilis: determination of kinetic and equilibrium parameters, Desal. Wat. Treat., 51 (2013) 7596–7603.
  53. A. Zahoor, A. Rehman, Isolation of Cr(VI) reducing bacteria from industrial effluents and their potential use in bioremediation of chromium containing wastewater, J. Environ. Sci., 21 (2009) 814–820.