References

  1. A. Dilek, Production and characterization of activated carbon from sour cherry stones by zinc chloride, Fuel, 115 (2014) 804–811.
  2. M.G. Lussier, J.C. Shull, D.J. Miller, Activated carbon from cherry stones, Carbon, 32 (1994) 1493–1498.
  3. P. Nowicki, J. Kazmierczak, R. Pietrzak, Comparison of physicochemical and sorption properties of activated carbons prepared by physical and chemical activation of cherry stones, Powder Technol., 269 (2015) 312–319.
  4. M. Olivares-Marín, C. Fernández-González, A. Macías-García, V. Gómez-Serrano, Preparation of activated carbons from cherry stones by activation with potassium hydroxide, Appl. Surf. Sci., 252 (2006) 5980–5983.
  5. M. Auta, B.H. Hameed, Preparation of waste tea activated carbon using potassium acetate as an activating agent for adsorption of Acid Blue 25 dye, Chem. Eng. J., 171 (2011) 502–509.
  6. M. Auta, B.H. Hameed, Optimized waste tea activated carbon for adsorption of Methylene Blue and Acid Blue 29 dyes using response surface methodology, Chem. Eng. J., 175 (2011) 233–243.
  7. A. Gundogdu, C. Duran, H.B. Senturk, M. Soylak, M. Imamoglu, Y. Onal, Physicochemical characteristics of a novel activated carbon produced from tea industry waste, J. Anal. Appl. Pyrolysis, 104 (2013) 249–259.
  8. C. Djilani, R. Zaghdoudi, F. Djazi, B. Bouchekima, A. Lallam, A. Modarressi, M. Rogalski, Adsorption of dyes on activated carbon prepared from apricot stones and commercial activated carbon, J. Taiwan Inst. Chem. Eng., 53 (2015) 112–121.
  9. T. Bohli, A. Ouederni, N. Fiol, I. Villaescusa, Evaluation of an activated carbon from olive stones used as an adsorbent for heavy metal removal from aqueous phases, C.R. Chim., 18 (2015) 88–99.
  10. R. Hazzaa, M. Hussein, Adsorption of cationic dye from aqueous solution onto activated carbon prepared from olive stones, Environ. Technol. Innovation, 4 (2015) 36–51.
  11. R.H. Hesas, A. Arami-Niya, W.M.A. Wan Daud, J.N. Sahu, Comparison of oil palm shell-based activated carbons produced by microwave and conventional heating methods using zinc chloride activation, J. Anal. Appl. Pyrolysis, 104 (2013) 176–184.
  12. S.-H. Jung, S.-J. Oh, G.-G. Choi, J.-S. Kim, Production and characterization of microporous activated carbons and metallurgical bio-coke from waste shell biomass, J. Anal. Appl. Pyrolysis, 109 (2014) 123–131.
  13. Q. Shi, J. Zhang, C. Zhang, C. Li, B. Zhang, W. Hu, J. Xu, R. Zhao, Preparation of activated carbon from cattail and its application for dyes removal, J. Environ. Sci., 22 (2010) 91–97.
  14. U. Isah A, G. Abdulraheem, S. Bala, S. Muhammad, M. Abdullahi, Kinetics, equilibrium and thermodynamics studies of C.I. Reactive Blue 19 dye adsorption on coconut shell based activated carbon, Int. Biodeterior. Biodegrad., 102 (2015) 265–273.
  15. W. Li, K. Yang, J. Peng, L. Zhang, S. Guo, H. Xia, Effects of carbonization temperatures on characteristics of porosity in coconut shell chars and activated carbons derived from carbonized coconut shell chars, Ind. Crops Prod., 28 (2008) 190–198.
  16. Y. Zhu, P. Kolar, Adsorptive removal of p-cresol using coconut shell-activated char, J. Environ. Chem. Eng., 2 (2014) 2050–2058.
  17. M. Kilic, E. Apaydin-Varol, A.E. Putun, Adsorptive removal of phenol from aqueous solutions on activated carbon prepared from tobacco residues: equilibrium, kinetics and thermodynamics, J. Hazard. Mater., 189 (2011) 397–403.
  18. Y. Liu, Y. Guo, W. Gao, Z. Wang, Y. Ma, Z. Wang, Simultaneous preparation of silica and activated carbon from rice husk ash, J. Cleaner Prod., 32 (2012) 204–209.
  19. B. Heibati, S. Rodriguez-Couto, M.A. Al-Ghouti, M. Asif, I. Tyagi, S. Agarwal, V.K. Gupta, Kinetics and thermodynamics of enhanced adsorption of the dye AR 18 using activated carbons prepared from walnut and poplar woods, J. Mol. Liq., 208 (2015) 99–105.
  20. M. Özdemir, T. Bolgaz, C. Saka, Ö. Şahin, Preparation and characterization of activated carbon from cotton stalks in a twostage process, J. Anal. Appl. Pyrolysis, 92 (2011) 171–175.
  21. H. Deng, G. Li, H. Yang, J. Tang, J. Tang, Preparation of activated carbons from cotton stalk by microwave assisted KOH and K2CO3 activation, Chem. Eng. J., 163 (2010) 373–381.
  22. H. Deng, L. Yang, G. Tao, J. Dai, Preparation and characterization of activated carbon from cotton stalk by microwave assisted chemical activation—application in methylene blue adsorption from aqueous solution, J. Hazard. Mater., 166 (2009) 1514–1521.
  23. E. Köseoğlu, C. Akmil-Başar, Preparation, structural evaluation and adsorptive properties of activated carbon from agricultural waste biomass, Adv. Powder Technol., 26 (2015) 811–818.
  24. A. Dilek, Utilization of activated carbon produced from fruit juice industry solid waste for the adsorption of Yellow 18 from aqueous solutions, Bioresour. Technol., 168 (2014) 259–266.
  25. M. Danish, R. Hashim, M.N.M. Ibrahim, M. Rafatullah, T. Ahmad, O. Sulaiman Characterization of acacia mangium wood based activated carbon prepared in the presence of basic activating agents, Bioresources, 6 (2011) 3019–3033.
  26. M.J. Ahmed, S.K. Dhedan, Equilibrium isotherms and kinetics modeling of methylene blue adsorption on agricultural wastesbased activated carbons, Fluid Phase Equilib., 317 (2012) 9–14.
  27. M.J. Ahmed, S.K. Theydan, Physical and chemical characteristics of activated carbon prepared by pyrolysis of chemically treated date stones and its ability to adsorb organics, Powder Technol., 229 (2012) 237–245.
  28. M.L. Sekirifa, M. Hadj-Mahammed, S. Pallier, L. Baameur, D. Richard, A.H. Al-Dujaili, Preparation and characterization of an activated carbon from a date stones variety by physical activation with carbon dioxide, J. Anal. Appl. Pyrolysis, 99 (2013) 155–160.
  29. B.H. Hameed, J.M. Salman, A.L. Ahmad, Adsorption isotherm and kinetic modeling of 2,4-D pesticide on activated carbon derived from date stones, J. Hazard. Mater., 163 (2009) 121–126.
  30. K.Y. Foo, B.H. Hameed, Preparation of activated carbon from date stones by microwave induced chemical activation: application for methylene blue adsorption, Chem. Eng. J., 170 (2011) 338–341.
  31. M. Danish, R. Hashim, M.N.M. Ibrahim, O. Sulaiman, Optimized preparation for large surface area activated carbon from date (Phoenix dactylifera L.) stone biomass, Biomass Bioenergy, 61 (2014) 167–178.
  32. C. Bouchelta, M.S. Medjram, O. Bertrand, J.-P. Bellat, Preparation and characterization of activated carbon from date stones by physical activation with steam, J. Anal. Appl. Pyrolysis, 82 (2008) 70–77.
  33. H. Marsh, F.R. Reinoso, Activated Carbon, Elsevier, Amsterdam, The Netherlands, 2006.
  34. L. Boudechiche, A. Araba, A. Tahar, R. Ouzrout, Study of chemical composition of date stones for use in animal feed, Livestock Res. Rural Dev., 21 (2009) 1–11.
  35. S. Brunauer, P.H. Emmett, E. Teller, Adsorption of gases in multimolecular layers, J. Am. Chem. Soc., 60 (1938) 309–319.
  36. D.E.K. Sing, R. Haul, L. Moscou, R. Pierotti, J. Rouquerol, T. Siemieniewska, Reporting physisorption data for gas/solid systems, with special reference to the determination of surface area and porosity (recommendations 1984), Pure Appl. Chem., 57 (1985) 603–619.
  37. F. Kaouah, S. Boumaza, T. Berrama, M. Trari, Z. Bendjama, Preparation and characterization of activated carbon from wild olive cores (oleaster) by H3PO4 for the removal of Basic Red 46, J. Cleaner Prod., 54 (2013) 296–306.
  38. M.J. Ahmed, S.K. Theydan, Optimization of microwave preparation conditions for activated carbon from Albizia lebbeck seed pods for methylene blue dye adsorption, J. Anal. Appl. Pyrolysis, 105 (2014) 199–208.
  39. S.J. Gregg, K.S.W. Sing, Adsorption, Surface Area, and Porosity, Academic Press, London, New York, 1982.
  40. M. Dubinin, L. Radushkevich, Equation of the characteristic curve of activated charcoal, Chem. Zentr., 1 (1947) 875–890.
  41. A. SE, C. Gimba, A. Uzairu, Y. Dallatu, Preparation and characterization of activated carbon from Palm Kernel shell by chemical activation, Res. J. Chem. Sci., 3 (2013) 56–61.
  42. N. Chaouch, M.R. Ouahrani, S. Chaouch, N. Gherraf, Adsorption of cadmium (II) from aqueous solutions by activated carbon produced from Algerian dates stones of Phoenix dactylifera by H3PO4 activation, Desal. Wat. Treat., 51 (2013) 2087–2092.
  43. M.Z.S. Hazourli, A. Hazourli, Characterization of activated carbon prepared from lignocellulosic natural residue: Example of date stones, Physics Procedia, 2 (2009) 1039–1043.
  44. C. Saka, BET, TG–DTG, FT-IR, SEM, iodine number analysis and preparation of activated carbon from acorn shell by chemical activation with ZnCl2, J. Anal. Appl. Pyrolysis, 95 (2012) 21–24.
  45. S. Bourbigot, M. Le Bras, R. Delobel, P. Bréant, J.-m. Trémillon, Carbonization mechanisms resulting from intumescence-part II. Association with an ethylene terpolymer and the ammonium polyphosphate-pentaerythritol fire retardant system, Carbon, 33 (1995) 283–294.
  46. C.J. Durán-Valle, M. Gómez-Corzo, J. Pastor-Villegas, V. Gómez- Serrano, Study of cherry stones as raw material in preparation of carbonaceous adsorbents, J. Anal. Appl. Pyrolysis, 73 (2005) 59–67.
  47. L. Pei, J. Zhou, L. Zhang, Preparation and properties of Ag-coated activated carbon nanocomposites for indoor air quality control, Build. Environ., 63 (2013) 108–113.
  48. A. Puziy, O. Poddubnaya, A. Martınez-Alonso, F. Suárez-Garcıa, J. Tascón, Synthetic carbons activated with phosphoric acid: I. Surface chemistry and ion binding properties, Carbon, 40 (2002) 1493–1505.