References

  1. W. Zhang, L. Dong, H. Yan, H. Li, Z. Jiang, X. Kan, H. Yang, A. Li, R. Cheng, Removal of methylene blue from aqueous solutions by straw based adsorbent in a fixed-bed column, Chem. Eng. J., 173 (2011) 429–436.
  2. N. Mathur, P. Bhatnager, P. Bakre, Assessing mutagenicity of textile dyes from Pali (Rajasthan) using Ames bioassay, Appl. Ecol. Environ. Res., 4 (2006) 111–118.
  3. I.A.W. Tan, A.L. Ahmad, B.H. Hameed, Adsorption of basic dye using activated carbon prepared from oil palm shell: batch and fixed bed studies, Desalination, 225 (2008) 13–28.
  4. V. Vadivelan, K.V. Kumar, Equilibrium, kinetics, mechanism and process design for the sorption of methylene blue onto rice husk, J. Colloid Interface Sci., 286 (2005) 90–100.
  5. E.L.K. Mui, W.H. Cheung, G. McKay, Tire char preparation from waste tyre rubber for dye removal from effluents, J. Hazard. Mater., 175 (2010) 151–158.
  6. M.A. Al-Ghouti, M.A.M. Khraisheh, M.N.M. Ahmad, S.J. Allen, Adsorption behavior of methylene blue onto Jordanian diatomite: a kinetic study, J. Hazard. Mater., 165 (2009) 589–598.
  7. T. Robinson, R. Marchant, P. Nigam, Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative, Bioresour. Technol., 77 (2001) 247–255.
  8. M.T. Uddin, M. Rukanuzzaman, M.M.M. Khan, M.A. Islam, Adsorption of methylene blue from aqueous solution by jackfruit (Artocarpus heteropyllus) leaf powder: a fixed-bed column study, J. Environ. Manage., 90 (2009) 3443–3450.
  9. R. Han, D. Ding, Y. Xu, W. Zou, Y. Wang, Y. Li, L. Zou, Use of rice husk for the adsorption of congo red from aqueous solution in column mode, Bioresour. Technol., 99 (2008) 2938–2946.
  10. S.S. Baral, N. Das, T.S. Ramulu, S.K. Sahoo, S.N. Das, G.R. Chaudhury, Removal of Cr(VI) by thermally activated weed Salvinia cucullata in a fixed-bed column, J. Hazard. Mater., 161 (2009) 1427–1435.
  11. E.I. Unuabonah, B.I. Olu-Owolabi, E.I. Fasuyi, K.O. Adebowale, Modeling of fixed-bed column studies for the adsorption of cadmium onto novel polymer–clay composite adsorbent, J. Hazard. Mater., 179 (2010) 415–423.
  12. Z. Wang, Y. Tian, X. Wang, Adsorption performance to methylene blue by non-activated tire-based pyrolytic char, Appl. Mech. Mater., 508 (2014) 35–39.
  13. F. Rozada, M. Otero, J.B. Parra, A. Moran, A.I. Garcia, Producing adsorbents from sewage sludge and discarded tyres: characterization and utilization for the removal of pollutants from water, Chem. Eng. J., 114 (2005) 161–169.
  14. E.L.K. Mui, W.H. Cheung, M. Valix, G. McKay, Dye adsorption onto activated carbons from tyre rubber waste using surface coverage analysis, J. Colloid Interface. Sci., 347 (2010) 290–300.
  15. E.M. Vizuete, A.M. Garcia, A.N. Gisbert, C.F. Gonzalez, V.G. Serrano, Adsorption of mercury by carbonaceous adsorbents prepared from rubber of tyre wastes, J. Hazard. Mater., 119 (2005) 231–238.
  16. G. McKay, M.J. Bino, A.R. Altamemi, The adsorption of various pollutants from aqueous solutions onto activated carbon, Water Res., 19 (1985) 491–495.
  17. N. Antoniou, A. Zabaniotou, Experimental proof of concept for a sustainable end of life tires pyrolysis with energy and porous materials production, J. Clean. Prod., 101 (2015) 323–336.
  18. H. Teng, M.A. Serio, M.A. Whjtowicz, R. Bassilakis, P.R. Solomon, Reprocessing of used tires into activated carbon and other products, Ind. Eng. Chem. Res., 34 (1995) 3102–3111.
  19. P. Ariyadejwanich, W. Tanthapanichakoon, K. Nakagawa, S.R. Mukai, H. Tamon, Preparation and characterization of mesoporous activated carbon from waste tires, Carbon, 41 (2003) 157–164.
  20. V.K. Gupta, I. Ali, V.K. Saini Suh, Removal of Rhodamine B, fast green, and methylene blue from wastewater using red mud, an aluminum industry waste, Ind. Eng. Chem. Res., 43 (2004) 1740–1747.
  21. Z. Eren, F.N. Acar, Adsorption of Reactive Black 5 from an aqueous solution: equilibrium and kinetic studies, Desalination, 194 (2006) 1–10.
  22. V.K. Gupta, A. Mittal, L. Krishnan, J. Mittal, Adsorption treatment and recovery of the hazardous dye, Brilliant Blue FCF, over bottom ash and de-oiled soya, J. Colloid Interface Sci., 293 (2006) 16–26.
  23. B. Armagan, T. Mustafa, M.S. Celik, Equilibrium studies on the adsorption of reactive azo dyes into zeolite, Desalination, 170 (2004) 33–39.
  24. R.P. Han, Y.F. Wang, P. Han, J. Shi, J. Yang, Y.S. Lu, Removal of methylene blue from aqueous solution by chaff in batch mode, J. Hazard. Mater., 137 (2006) 550–557.
  25. K.V. Kumar, S. Sivanesan, Equilibrium data, isotherm parameters and process design for partial and complete isotherm of methylene blue onto activated carbon. J. Hazard. Mater., 131 (2006) 237–244.
  26. B. Acevedo, C. Barriocanal, Texture and surface chemistry of activated carbons obtained from tyre wastes, Fuel Process. Technol., 134 (2015) 275–283.
  27. V. Makrigianni, A. Giannakas, Y. Deligiannakis, I. Konstantinou, Adsorption of phenol and methylene blue from aqueous solutions by pyrolytic tire char: equilibrium and kinetic studies, J. Environ. Chem. Eng., 3 (2015) 574–582.
  28. V. Makrigianni, A. Giannakas, C. Daikopoulos, Y. Deligiannakis, I. Konstantinou, Preparation, characterization and photocatalytic performance of pyrolytic-tire-char/TiO2 composites, toward phenol oxidation in aqueous solutions, Appl. Catal., B, 174 (2015) 244–252.
  29. R. Acosta, V. Fierro, A. Martinez de Yuso, D. Nabarlatz, A. Celzard, Tetracycline adsorption onto activated carbons produced by KOH activation of tyre pyrolysis char, Chemosphere, 149 (2016) 168–176.
  30. C. Troca-Torrado, M. Alexandre-Franco, C. Fernández-González, M. Alfaro-Domínguez, V. Gómez-Serrano, Development of adsorbents from used tire rubber: their use in the adsorption of organic and inorganic solutes in aqueous solution, Fuel Process. Technol., 92 (2011) 206–212.
  31. T.A. Saleh, V.K. Gupta, Processing methods, characteristics and adsorption behaviour of tire derived carbons: a review, Adv. Colloid Interface Sci., 211 (2014) 93–101.
  32. A. Shahtalebi, M.M. Sarrafradeh, G. Mckay, An adsorption diffusion model for removal of copper(II) from aqueous solution by pyrolytic tyre char, Desal. Wat. Treat., 51 (2013) 5664–5673.
  33. H.P. Boehm, Some aspects of the surface chemistry of carbon blacks and other carbons, Carbon, 32 (1994) 759–769.
  34. K. Bourikas, J. Vakros, C. Kordulis, A. Lycourghiotis, Potentiometric mass titrations: experimental and theoretical establishment of a new technique for determining the point of zero charge (PZC) of metal (hydr)oxides, J. Phys. Chem. B, 107 (2003) 9441–9451.
  35. G.S. Bohart, E.Q. Adams, Behavior of charcoal towards chlorine, J. Chem. Soc., 42 (1920) 523–544.
  36. Y.H. Yoon, J.H. Nelson, Application of gas adsorption kinetics. Part 1. A theoretical model for respirator cartridge service time, Am. Ind. Hyg. Assoc. J., 45 (1984) 509–516.
  37. H.C. Thomas, Heterogeneous ion exchange in a flowing system, J. Am. Chem. Soc., 66 (1944) 1664–1666.
  38. E.M. Suuberg, I. Aarna, The Nature of Porosity in Carbons Derived from Scrap Automobile Tires, Division of Engineering, Brown University Providence, RI 02912, USA.
  39. A.M. Fernandez, C. Barriocanal, R. Alvarez, Pyrolysis of a waste from the grinding of scrap tyres, J. Hazard. Mater., 203–204 (2012) 236–243.
  40. R. Helleur, N. Popovic, M. Ikura, M. Stanciulescu, D. Liu, Characterisation and potential applications of pyrolytic char from ablative pyrolysis of used tires, J. Anal. Appl. Pyrolysis, 58–59 (2001) 813–824.
  41. A. Zabaniotou, G. Stavropoulos, Pyrolysis of used automobile tires and residual char utilization, J. Anal. Appl. Pyrolysis, 70 (2003) 711–722.
  42. G.S. Miguel, G.D. Fowler, M. Dall’Orso, C.J. Sollars, Porosity and surface characteristics of activated carbons produced from waste tyre rubber, J. Chem. Technol. Biotechnol., 77 (2001) 1–8.
  43. P. Hadi, K.Y. Yeung, J. Guo, H. Wang, G. McKay, Sustainable development of tyre char-based activated carbons with different textural properties for value-added applications, J. Environ. Manage., 170 (2016) 1–7.
  44. P.T. Williams, Pyrolysis of waste tyres: a review, Waste Manage., 33 (2013) 1714–1728.
  45. S.Q. Li, Q. Yao, Y. Chi, J.H. Yan, K.F. Cen, Pilot-scale pyrolysis of scrap tires in a continuous rotary kiln reactor, Ind. Eng. Chem. Res., 43 (2004) 5133–5145.
  46. F.A. López, T.A. Centeno, O. Rodríguez, F.J. Alguacil, Preparation and characterization of activated carbon from the char produced in the thermolysis of granulated scrap tyres, J. Air Waste Manage. Assoc., 63 (2013) 534–544.
  47. F. Lian, F. Huang, W. Chen, B. Xing, L. Zhu, Sorption of a polar and polar organic contaminants by waste tire rubber and its chars in single- and bi-solute systems, Environ. Pollut., 159 (2011) 850–857.
  48. Y. Li, Q. Du, T. Liu, X. Peng, J. Wang, J. Sun, Y. Wang, S. Wu, Z. Wang, Y. Xia, L. Xia, Comparative study of methylene blue dye adsorption onto activated carbon, graphene oxide, and carbon nanotubes, Chem. Eng. Res. Des., 91 (2013) 361–368.
  49. W.J. Weber, J.X. Tang, Q.G. Huang, Development of engineered natural organic sorbents for environmental applications. 1. Materials, approaches, and characterizations, Environ. Sci. Technol., 40 (2006) 1650–1656.
  50. H. Deng, L. Yang, G.H. Tao, J.L. Dai, Preparation and characterization of activated carbon from cotton stalk by microwave assisted chemical activation application in methylene blue adsorption from aqueous solution, J. Hazard. Mater., 166 (2009) 1514–1521.
  51. R. Ji, K. Yu, L.-L. Lou, C. Zhang, Y. Han, S. Pan, S. Liu, Chiral Mn(III) salen complexes immobilized directly on pyrolytic waste tire char for asymmetric epoxidation of unfunctionalized olefins, Inorg. Chem. Commun., 25 (2012) 65–69.
  52. N. Ben Douissa, L. Bergaoui, S. Mansouri, R. Khiari, M.F. Mhenni, Macroscopic and microscopic studies of methylene blue sorption onto extracted celluloses from Posidonia oceanica, Ind. Crops Prod., 45 (2013) 106–113.
  53. J. Goel, K. Kadirvelu, C. Rajagopal, V.K. Garg, Removal of lead(II) by adsorption using treated granular activated carbon: batch and column studies, J. Hazard. Mater., 125 (2005) 211–220.
  54. E. Malko, Y. Nuhoghi, Removal of Ni(ii) ions from aqueous solutions using waste of tea factory: adsorption on a fixed-bed column, J. Hazard. Mater., 135 (2006) 328–336.
  55. K.Y. Foo, B.H. Hameed, Dynamic adsorption behavior of methylene blue onto oil palm shell granular activated carbon prepared by microwave heating, Chem. Eng. J., 203 (2012) 81–87.
  56. R. Han, Y. Wang, W. Yu, W. Zou, J. Shi, H. Liu, Biosorption of methylene blue from aqueous solution by rice husk in a fixed bed column, J. Hazard. Mater., 141 (2007) 713–718.
  57. D.C.K. Ko, J.F. Porter, G. McKay, Optimised correlations for the fixed bed adsorption of metal ions on bone char, Chem. Eng. Sci., 55 (2000) 5819–5829.
  58. O. Ozdemir, M. Turan, A.Z. Turan, A. Faki, A.B. Engin, Feasibility analysis of color removal from textile dyeing wastewater in a fixed-bed column system by surfactant-modified zeolite (SMZ), J. Hazard. Mater., 166 (2009) 647–654.
  59. W. Li, Y. Qinyan, T. Peng, M. Zuohao, B. Gao, J. Li. X. Xu, Adsorption characteristics of dyes in columns of activated carbon prepared from paper mill sewage sludge, Chem. Eng. J., 178 (2011) 197–203.
  60. A.B. Albadarin, C. Mangwandi, A.H. Al-Muhtaseb, G.M. Walker, S.J. Allen, M.N.M. Ahmad, Modelling and fixed bed column adsorption of Cr(VI) onto orthophosphoric acid-activated lignin, Chin. J. Chem. Eng., 20 (2012) 469–477.
  61. S. Sugashini, K. Mohamed, M.S. Begum, Performance of ozone treated rice husk carbon (OTRHC) for continuous adsorption of Cr (VI) ions from synthetic effluent, J. Environ. Chem. Eng., 1 (2013) 79–85.
  62. R. Han, Y. Wang, W. Zou, Y. Wang, J. Shi, Comparison of linear and nonlinear analysis in estimating the Thomas model parameters for methylene blue adsorption onto natural zeolite in fixed-bed column, J. Hazard. Mater., 145 (2007) 331–335.
  63. Z. Aksu, F. Gonen, Biosorption of phenol by immobilized activated sludge in a continuous packed bed: prediction of breakthrough curves, Process Biochem., 39 (2004) 599–613.
  64. A.A. Attia, B.S. Girgis, N.A. Fathy, Removal of methylene blue by carbons derived from peach stones by H3PO4 activation: batch and column studies, Dyes Pigm., 76 (2008) 282–289.
  65. G.G. Stavropoulos, A.A. Zabaniotou, Production and characterization of activated carbons from olive-seed waste residue, Microporous Mesoporous Mater., 82 (2005) 79–85.
  66. Ç. Sarici-Özdemir, Removal of methylene blue by activated carbon prepared from waste in a fixed-bed column, Particul. Sci. Technol., 32 (2014) 311–318.