References

  1. S.T.L. Tay, Removal of phenol from wastewater by microbial granules, In: J.H. Tay, S.T.L. Tay, Y. Liu, K.Y. Show, V. Ivanov, Biogranulationtechnologies for wastewater treatment: microbial granules, 1st ed., Elsevier, Amsterdam, 2006, pp. 191–212.
  2. V.K. Dhatwalia, M. Nanda, Biodegradation of phenol: mechanisms and applications, In: A.K. Rathoure, and V.K. Dhatwalia, Toxicity and waste management using bioremediation, IGI Global, Hershey, PA, USA, 2015, pp. 198–214.
  3. R. Molinari, P. Argurio, T. Poerio, Vanadyl acetylacetonate filled PVDF membranes as the core of a liquid phase continuous process for pure phenol production from benzene, J. Membr. Sci., 476 (2015) 490–499.
  4. V.L. Singleton, R. Orthofer, R.M. Lamuela-Raventos, Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent, Methods Enzymol., 299 (1999) 152–178.
  5. J. Zhang, Z. Sun, Y. Li, X. Peng, W. Li, Y. Yan, Biodegradation of p-nitrophenol by Rhodococcus sp. CN6 with high cell surface hydrophobicity, J. Hazard. Mater., 163 (2009) 723–728.
  6. K.F. Reardon, D.C. Mosteller, J.D. Bull Rogers, Biodegradation kinetics of benzene, toluene, and phenol as single and mixed substrates for Pseudomonas putida F1, Biotechnol. Bioeng., 69 (2000) 385–400.
  7. T. Al-Khalid, M.H. El-Naas, Aerobic biodegradation of phenols: a comprehensive review, Crit. Rev. Environ. Sci. Technol., 42 (2012) 1631–1690.
  8. S.K. Schmidt, S. Simkins, M. Alexander, Models for the kinetics of biodegradation of organic compounds not supporting growth, Appl. Environ. Microbiol., 50 (1985) 323–331.
  9. J.C. Spain, D.T. Gibson, Pathway for biodegradation of p-nitrophenol in a Moraxella sp., Appl. Environ. Microbiol., 57 (1991) 812–819.
  10. S.F. Nishino, J.C. Spain, Degradation of nitrobenzene by a Pseudomonas pseudoalcaligenes, Appl. Environ. Microbiol., 59 (1993) 2520–2525.
  11. J.C. Spain, P.A. Van Veld, C.A. Monti, P.H. Pritchard, C.R. Cripe, Comparison of p-nitrophenol biodegradation in field and laboratory test systems, Appl. Environ. Microbiol., 48 (1984) 944–950.
  12. J. Zeyer, P.C. Kearney, Degradation of o-nitrophenol and m-nitrophenol by a Pseudomonas putida, J. Agric. Food Chem., 32 (1984) 238–242.
  13. S.F. Nishino, J.C. Spain, Cell density-dependent adaptation of Pseudomonas putida to biodegradation of p-nitrophenol, Environ. Sci. Technol., 27 (1993) 489–494.
  14. C.S. Criddle, The kinetics of cometabolism, Biotechnol. Bioeng., 41 (1993) 1048–1056.
  15. W. Chang, C.S. Criddle, Experimental evaluation of a model for cometabolism: prediction of simultaneous degradation of trichloroethylene and methane by a methanotrophic mixed culture, Biotechnol. Bioeng., 56 (1997) 492–501.
  16. J. Jesus, D. Frascari, T. Pozdniakova, A.S. Danko, Kinetics of aerobic cometabolic biodegradation of chlorinated and brominated aliphatic hydrocarbons: a review, J. Hazard. Mater., 309 (2016) 37–52.
  17. L. Alvarez-Cohen, G.E. Speitel Jr., Kinetics of aerobic cometabolism of chlorinated solvents, Biodegradation, 12 (2001) 105–126.
  18. H. Jamshidian, S. Khatami, A. Mogharei, F. Vahabzadeh, A. Nickzad, Cometabolic degradation of para-nitrophenol and phenol by Ralstonia eutropha in a Kissiris-immobilized cell bioreactor, Korean J. Chem. Eng., 30 (2013) 2052–2058.
  19. M. Maleki, M. Motamedi, M. Sedighi, S.M. Zamir, F. Vahabzadeh, Experimental study and kinetic modeling of cometabolic degradation of phenol and p-nitrophenol by loofaimmobilized Ralstonia eutropha, Biotechnol. Bioprocess Eng., 20 (2015) 124–130.
  20. M. Motamedi, A. Habibi, M. Maleki, F. Vahabzadeh, Experimental investigation and kinetic modeling of p-nitrophenol and phenol by Kissiris-immobilized Ralstonia eutropha in a batch reactor, CLEAN–Soil Air Water, 43 (2015) 237–243.
  21. A. Nickzad, A. Mogharei, A. Monazzami, H. Jamshidian, F. Vahabzadeh, Biodegradation of phenol by Ralstonia eutropha in a Kissiris-immobilized cell bioreactor, Water Environ. Res., 84 (2012) 626–634.
  22. G.G. Vining, S. Kowalski, Statistical Methods for Engineers, 3rd ed., Cengage Learning, Boston, MA, USA, 2010.
  23. I. Stoilova, A. Krastanov, V. Stanchev, D. Daniel, M. Gerginova, Z. Alexieva, Biodegradation of high amounts of phenol, catechol, 2,4-dichlorophenol and 2,6-dimethoxyphenol by Aspergillus awamori cells, Enzyme Microb. Technol., 39 (2006) 1036–1041.
  24. C. Chandekar, A. Ingle, Degradation of p-nitrophenol by a Pseudomonas sp. strain PC isolated from sewage, J. Ind. Pollut. Control, 6 (1990) 11–17.
  25. A. Habibi, F. Vahabzadeh, Degradation of formaldehyde in packed-bed bioreactor by kissiris-immobilized Ralstonia eutropha, Biotechnol. Bioprocess Eng., 18 (2013) 455–464.
  26. N.M. Heilbuth, V.R. Linardi, A.S. Monteiro, R.A. da Rocha, L.A. Mimim, V.L. Santos, Estimation of kinetic parameters of phenol degradation by bacteria isolated from activated sludge using a genetic algorithm, J. Chem. Technol. Biotechnol., 90 (2015), 2066–2075.
  27. Á.A. Monteiro, R.A. Boaventura, A.E. Rodrigues, Phenol biodegradation by Pseudomonas putida DSM 548 in a batch reactor, Biochem. Eng. J., 6 (2000) 45–49.
  28. A. Tarighian, G. Hill, J. Headley, S. Pedras, Enhancement of 4-chlorophenol biodegradation using glucose, Clean Technol. Environ. Policy, 5 (2003) 61–65.
  29. M.F. Verce, D.L. Freedman, Modeling the kinetics of vinyl chloride cometabolism by an ethane-grown Pseudomonas sp., Biotechnol. Bioeng., 71 (2000) 274–285.
  30. C.S. Harwood, J. Gibson, Shedding light on anaerobic benzene ring degradation: a process unique to prokaryotes? J. Bacteriol., 179 (1997) 301–309.
  31. M.K. Julsing, D. Kuhn, A. Schmid, B. Bühler, Resting cells of recombinant E. coli show high epoxidation yields on energy source and high sensitivity to product inhibition, Biotechnol. Bioeng., 109 (2012) 1109–1119.
  32. S.J. Wang, K.C. Loh, Biotransformation kinetics of Pseudomonas putida for cometabolism of phenol and 4-chlorophenol in the presence of sodium glutamate, Biodegradation, 12 (2001) 189–199.
  33. Y.M. Chen, T.F. Lin, C. Huang, J.C. Lin, Cometabolic degradation kinetics of TCE and phenol by Pseudomonas putida, Chemosphere, 72 (2008) 1671–1680.
  34. M. Sedighi, F. Vahabzadeh, Kinetic modeling of cometabolic degradation of ethanethiol and phenol by Ralstonia eutropha, Biotechnol. Bioprocess Eng., 19 (2014) 239–249.
  35. G.F. Zubay, Biochemistry, 4th ed., Wm. C. Brown Publishers, Dubuque, IA, USA, 1998.
  36. J.E. Bailey, D.F. Ollis, Biochemical engineering fundamentals, 2nd ed., Mc-Graw Hill, New York, NY, USA, 1986.
  37. W. Kitagawa, N. Kimura, Y. Kamagata, A novel p-nitrophenol degradation gene cluster from a gram-positive bacterium, Rhodococcus opacus SAO101, J. Bacteriol., 186 (2004) 4894–4902.
  38. B.R. Folsom, P.J. Chapmanm, P.H. Pritchard, Phenol and trichloroethylene degradation by Pseudomonas cepacia G4: kinetics and interactions between substrates, Appl. Environ. Microbiol., 56 (1990) 1279–1285.