References

  1. S. Morris, C.R. Allchin, B.N. Zegers, J.J.H. Haftka, J.P. Boon, C. Belpaire, P.E.G. Leonards, S.P.J. van Leeuwen, J. de Boer, Distribution and fate of HBCD and TBBPA brominated flame retardants in North Sea Estuaries and aquatic food webs, Environ. Sci. Technol., 38 (2004) 5497–5504.
  2. S. Kitamura, N. Jinno, S. Ohta, H. Kuroki, N. Fujimoto, Thyroid hormonal activity of the flame retardants tetrabromobisphenol A and tetrachlorobisphenol A, Biochem. Biophys. Res. Commun., 293 (2002) 554–559.
  3. B. Ravit, J.G. Ehrenfeld, M.M. Häggblom, Salt marsh rhizosphere affects microbial transformation of the widespread halogenated contaminant tetrabromobisphenol-A (TBBPA), Soil Biol. Biochem., 37 (2005) 1049–1057.
  4. WHO, Tetrabromobisphenol A and Derivatives, International Program on Chemical Safety, Geneva, Switzerland, 1995.
  5. Y. Tada, T. Fujitani, N. Yano, H. Takahashi, K. Yuzawa, H. Ando, Y. Kubo, A. Nagasawa, A. Ogata, H. Kamimura, Effects of tetrabromobisphenol A, brominated flame retardant, in ICR mice after prenatal and postnatal exposure, Food Chem. Toxicol., 44 (2006) 1408–1413.
  6. M. Koizumi, Y. Yamamoto, Y. Ito, M. Takano, T. Enami, E. Kamata, R. Hasegawa, Comparative study of toxicity of 4-nitrophenol and 2,4-dinitrophenol in newborn and young rats, J. Toxicol. Sci., 26 (2001) 299–311.
  7. J.A. Szymanska, A. Sapota, B. Frydrych, The disposition and metabolism of tetrabromobisphenol-A after a single i.p. dose in the rat, Chemosphere, 45 (2001) 693–700.
  8. Y. Nakagawa, T. Suzuki, H. Ishii, A. Ogata, Biotransformation and cytotoxicity of a brominated flame retardant, tetrabromobisphenol A, and its analogues in rat hepatocytes, Xenobiotica, 37 (2007) 693–708.
  9. WHO, Environmental Health Criteria 172, Tetrabromobisphenol A and Derivative, Geneva, Switzerland, 1995.
  10. S. Pullen, R. Boecker, G. Tiegs, The flame retardants tetrabromobisphenol A and tetrabromobisphenol A-bisallylether suppress the induction of interleukin-2 receptor alpha chain (CD25) in murine splenocytes, Toxicology, 184 (2003) 11–22.
  11. H. Viberg, P. Eriksson, Differences in neonatal neurotoxicity of brominated flame retardants, PBDE 99 and TBBPA, in mice, Toxicology, 289 (2011) 59–65.
  12. T. Reistad, E. Mariussen, A. Ring, F. Fonnum, In vitro toxicity of tetrabromobisphenol-A on cerebellar granule cells: cell death, free radical formation, calcium influx and extracellular glutamate, Toxicol. Sci., 96 (2007) 268–278.
  13. H. Lilienthal, M.V. Cynthia, Exposure to tetrabromobisphenol A (TBBPA) in Wistar rats: neurobehavioral effects in offspring from a one-generation reproduction study, Toxicology, 246 (2008) 45–54.
  14. R.V. Kuiper, E.J. van den Brandhof, P.E. Leonards, L.T. van der Ven, P.W. Wester, J.G. Vos, Toxicity of tetrabromobisphenol A (TBBPA) in zebrafish (Danio rerio) in a partial life-cycle test, Arch. Toxicol., 81 (2007) 1–9.
  15. N. Fujimoto, S. Maruyama, A. Ito, Establishment of an estrogen responsive rat pituitary cell subline MtT/E-2, Endocr. J., 46 (1999) 389–396.
  16. J.G. Hollowell Jr., P.L. Garbe, D.T. Miller, Maternal thyroid deficiency during pregnancy and subsequent neuropsychological development of the child, N. Engl. J. Med., 341 (1999) 549–555.
  17. M. Grabda, S. Oleszek-Kudlak, M. Rzyman, E. Shibata, T. Nakamura, Studies on bromination and evaporation of zinc oxide during thermal treatment with TBBPA, Environ. Sci. Technol., 43 (2009) 1205–1210.
  18. M. Grabda, S. Oleszek-Kudlak, E. Shibata, T. Nakamura, Influence of temperature and heating time on bromination of zinc oxide during thermal treatment with tetrabromobisphenol A, Environ. Sci. Technol., 43 (2009) 8936–8941.
  19. M. Rzyman, M. Grabda, S. Oleszek-Kudlak, E. Shibata, T. Nakamura, Studies on bromination and evaporation of antimony oxide during thermal treatment of tetrabromobisphenol A (TBBPA), J. Anal. Appl. Pyrolysis, 88 (2010) 14–21.
  20. E. Shibata, M. Grabda, T. Nakamura, Thermodynamic consideration of the bromination reactions of inorganic compounds, J. Jpn. Soc. Waste Manage. Experts, 17 (2006) 361–371.
  21. Q. Zhu, M. Igarashi, M. Sasaki, T. Miyamoto, R. Kodama, M. Fukushima, Degradation and debromination of bromophenols using a free-base porphyrin and metalloporphyrins as photosensitizers under conditions of visible light irradiation in the absence and presence of humic substances, Appl. Catal., B, 183 (2016) 61–68.
  22. K. Lin, W. Liu, J. Gan, Reaction of tetrabromobisphenol A (TBBPA) with manganese dioxide: kinetics, products, and pathways, Environ. Sci. Technol., 43 (2009) 4480–4486.
  23. T. Peng, D. Zhao, K. Dai, W. Shi, K. Hirao, Synthesis of titanium dioxide nanoparticles with mesoporous anatase wall and high photocatalytic activity, J. Phys. Chem., 109 (2005) 4947–4952.
  24. S.M. Klein, V.N. Manoharan, D.J. Pine, F.F. Lange, Synthesis of spherical polymer and titania photonic crystallites, Langmuir, 21 (2005) 6669–6674.
  25. H. Shibata, H. Mihara, T. Mukai, T. Ogura, H. Kohno, T. Ohkubo, H. Sakai, M. Abe, Preparation and formation mechanism of mesoporous titania particles having crystalline wall, Chem. Mater., 18 (2006) 2256–2260.
  26. M. Addamo, V. Augugliaro, A.D. Paola, E. García-López, V. Loddo, G. Marc, R. Molinari, L. Palmisano, M.S. Preparation, Characterization and photoactivity of polycrystalline nanostructured TiO2 catalysts, Phys. Chem. B., 108 (2004) 3303–3310.
  27. C. Krüger, Polybrominated Biphenyls and Polybrominated Diphenyl Ethers – Detection and Quantitation in Selected Foods, PhD Thesis, University of Munster, Germany, 1988 (in German).
  28. S.H. Wang, E. Raptis, J. Yeh, Ion chromatography for the determination of sulfate in STEALTH® liposomes, J. Chromatogr., A, 1039 (2004) 51–58.
  29. A.Y. Ahmed, T.A. Kandiel, T. Oekermann, D. Bahnemann, Photocatalytic activities of different well-defined single crystal TiO2 surfaces: anatase versus rutile, Phys. Chem. Lett., 2 (2011) 2461–2465.
  30. J. Jia, S. Zhang, P. Wang, H. Wang, Degradation of high concentration 2,4-dichlorophenol by simultaneous photocatalytic–enzymatic process using TiO2/UV and laccase, J. Hazard. Mater., 205–206 (2012) 150–155.
  31. E.S. Elmolla, M. Chaudhuri, Photocatalytic degradation of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution using UV/TiO2 and UV/H2O2/TiO2 photocatalysis, Desalination, 252 (2010) 46–52.
  32. P. Konieczka, J. Namieśnik, Estimating uncertainty in analytical procedures based on chromatographic techniques, J. Chromatogr., A, 1217 (2010) 882–891.
  33. P. Westerhoff, S.P. Mezyk, W.J. Cooper, D. Minakata, Electron pulse radiolysis determination of hydroxyl radical rate constants with Suwannee River fulvic acid and other dissolved organic matter isolates, Environ. Sci. Technol., 41 (2007), 4640–4646.
  34. B. Halliwell, H. Kaur, M. Ingelman-Sundbergm, Hydroxylation of salicylate as an assay for hydroxyl radicals: a cautionary note, Free Radical Biol. Med., 10 (1991) 439–441.
  35. Z. Maskos, J.D. Rush, W.H. Koppenol, The hydroxylations of phenylalanine and tyrosine are similar to that of salicylate, Free Radical Biol. Med., 8 (1990) 153–162.
  36. M.E. Lindsey, M.A. Tarr, Quantitation of hydroxyl radical during Fenton oxidation following a single addition of iron and peroxide, Chemosphere, 41 (2000) 409–417.
  37. J.W. Voordeckers, D.E. Fennell, K. Jones, M.M. Häggblom, Anaerobic biotransformation of tetrabromobisphenol A, tetrachlorobisphenol A, and bisphenol A in estuarine sediments, Environ. Sci. Technol., 36 (2002) 696–701.
  38. N. Schneider, K. Werkmeister, M. Pischetsrieder, Analysis of nisin A, nisin Z and their degradation products by LCMS/MS, Food Chem., 127 (2011) 847–854.
  39. C.I.T. Institute, Biodegradation and Bioaccumulation Date of Existing Chemicals Based on the CSCL Japan, Tokyo Toxiclogy and Information Center, Japan Chemical Industry Ecology, Japan, 1992.
  40. Y. Ding, L. Zhu, N. Wang, H. Tang, Sulfate radicals induced degradation of tetrabromobisphenol A with nanoscaled magnetic CuFe2O4 as a heterogeneous catalyst of peroxymonosulfate, Appl. Catal., B, 129 (2013) 153–162
  41. M. Fukushima, Y. Ishida, S. Shigematsu, H. Kuramitz, S. Nagao, Pattern of oxidation products derived from tetrabromobisphenol A in a catalytic system comprised of iron(III)-tetrakis(p-sulfophenyl)porphyrin, KHSO5 and humic acids, Chemosphere, 80 (2010) 860–865
  42. Y. Guo, X. Lou, D. Xiao, L. Xu, Z. Wang, J. Liu, Sequential reduction–oxidation for photocatalytic degradation of tetrabromobisphenol A: kinetics and intermediates, J. Hazard. Mater., 241–242 (2012) 301–306.
  43. R.A. French, A.R. Jacobson, B. Kim, S.L. Isley, R.L. Penn, P.C. Baveye, Influence of ionic strength, pH, and cation valence on aggregation kinetics of titanium dioxide nanoparticles, Environ. Sci. Technol., 43 (2009) 1354–1359.
  44. S. Horikoshi, T. Miura, M. Kajitani, Photodegradation of tetrahalobisphenol-A (X=Cl, Br) flame retardants and delineation of factors affecting the process, Appl. Catal., B, 84 (2008) 797–802.
  45. K. Hashimoto, H. Irie, A. Fujishima, TiO2 photocatalysis: a historical overview and future prospects, Jpn. J. Appl. Phys., Part 1, 44 (2005) 8269–8285.
  46. A. Fujishima, K. Hashimoto, T. Watanabe, TiO2 Photocatalysis Fundamentals and Applications, BKC Publication, Tokyo, 1999.