References
- S. Morris, C.R. Allchin, B.N. Zegers, J.J.H. Haftka, J.P. Boon,
C. Belpaire, P.E.G. Leonards, S.P.J. van Leeuwen, J. de Boer,
Distribution and fate of HBCD and TBBPA brominated flame
retardants in North Sea Estuaries and aquatic food webs,
Environ. Sci. Technol., 38 (2004) 5497–5504.
- S. Kitamura, N. Jinno, S. Ohta, H. Kuroki, N. Fujimoto, Thyroid
hormonal activity of the flame retardants tetrabromobisphenol
A and tetrachlorobisphenol A, Biochem. Biophys. Res.
Commun., 293 (2002) 554–559.
- B. Ravit, J.G. Ehrenfeld, M.M. Häggblom, Salt marsh
rhizosphere affects microbial transformation of the widespread
halogenated contaminant tetrabromobisphenol-A (TBBPA), Soil
Biol. Biochem., 37 (2005) 1049–1057.
- WHO, Tetrabromobisphenol A and Derivatives, International
Program on Chemical Safety, Geneva, Switzerland, 1995.
- Y. Tada, T. Fujitani, N. Yano, H. Takahashi, K. Yuzawa, H.
Ando, Y. Kubo, A. Nagasawa, A. Ogata, H. Kamimura, Effects
of tetrabromobisphenol A, brominated flame retardant, in
ICR mice after prenatal and postnatal exposure, Food Chem.
Toxicol., 44 (2006) 1408–1413.
- M. Koizumi, Y. Yamamoto, Y. Ito, M. Takano, T. Enami, E.
Kamata, R. Hasegawa, Comparative study of toxicity of
4-nitrophenol and 2,4-dinitrophenol in newborn and young
rats, J. Toxicol. Sci., 26 (2001) 299–311.
- J.A. Szymanska, A. Sapota, B. Frydrych, The disposition and
metabolism of tetrabromobisphenol-A after a single i.p. dose in
the rat, Chemosphere, 45 (2001) 693–700.
- Y. Nakagawa, T. Suzuki, H. Ishii, A. Ogata, Biotransformation
and cytotoxicity of a brominated flame retardant,
tetrabromobisphenol A, and its analogues in rat hepatocytes,
Xenobiotica, 37 (2007) 693–708.
- WHO, Environmental Health Criteria 172, Tetrabromobisphenol
A and Derivative, Geneva, Switzerland, 1995.
- S. Pullen, R. Boecker, G. Tiegs, The flame retardants
tetrabromobisphenol A and tetrabromobisphenol
A-bisallylether suppress the induction of interleukin-2 receptor
alpha chain (CD25) in murine splenocytes, Toxicology,
184 (2003) 11–22.
- H. Viberg, P. Eriksson, Differences in neonatal neurotoxicity
of brominated flame retardants, PBDE 99 and TBBPA, in mice,
Toxicology, 289 (2011) 59–65.
- T. Reistad, E. Mariussen, A. Ring, F. Fonnum, In vitro toxicity
of tetrabromobisphenol-A on cerebellar granule cells: cell
death, free radical formation, calcium influx and extracellular
glutamate, Toxicol. Sci., 96 (2007) 268–278.
- H. Lilienthal, M.V. Cynthia, Exposure to tetrabromobisphenol
A (TBBPA) in Wistar rats: neurobehavioral effects in offspring
from a one-generation reproduction study, Toxicology, 246
(2008) 45–54.
- R.V. Kuiper, E.J. van den Brandhof, P.E. Leonards, L.T. van der
Ven, P.W. Wester, J.G. Vos, Toxicity of tetrabromobisphenol A
(TBBPA) in zebrafish (Danio rerio) in a partial life-cycle test,
Arch. Toxicol., 81 (2007) 1–9.
- N. Fujimoto, S. Maruyama, A. Ito, Establishment of an estrogen
responsive rat pituitary cell subline MtT/E-2, Endocr. J., 46
(1999) 389–396.
- J.G. Hollowell Jr., P.L. Garbe, D.T. Miller, Maternal
thyroid deficiency during pregnancy and subsequent
neuropsychological development of the child, N. Engl. J. Med.,
341 (1999) 549–555.
- M. Grabda, S. Oleszek-Kudlak, M. Rzyman, E. Shibata, T.
Nakamura, Studies on bromination and evaporation of zinc
oxide during thermal treatment with TBBPA, Environ. Sci.
Technol., 43 (2009) 1205–1210.
- M. Grabda, S. Oleszek-Kudlak, E. Shibata, T. Nakamura,
Influence of temperature and heating time on bromination of
zinc oxide during thermal treatment with tetrabromobisphenol
A, Environ. Sci. Technol., 43 (2009) 8936–8941.
- M. Rzyman, M. Grabda, S. Oleszek-Kudlak, E. Shibata, T.
Nakamura, Studies on bromination and evaporation of antimony
oxide during thermal treatment of tetrabromobisphenol A
(TBBPA), J. Anal. Appl. Pyrolysis, 88 (2010) 14–21.
- E. Shibata, M. Grabda, T. Nakamura, Thermodynamic
consideration of the bromination reactions of inorganic
compounds, J. Jpn. Soc. Waste Manage. Experts, 17 (2006)
361–371.
- Q. Zhu, M. Igarashi, M. Sasaki, T. Miyamoto, R. Kodama, M.
Fukushima, Degradation and debromination of bromophenols
using a free-base porphyrin and metalloporphyrins as
photosensitizers under conditions of visible light irradiation in
the absence and presence of humic substances, Appl. Catal., B,
183 (2016) 61–68.
- K. Lin, W. Liu, J. Gan, Reaction of tetrabromobisphenol A
(TBBPA) with manganese dioxide: kinetics, products, and
pathways, Environ. Sci. Technol., 43 (2009) 4480–4486.
- T. Peng, D. Zhao, K. Dai, W. Shi, K. Hirao, Synthesis of titanium
dioxide nanoparticles with mesoporous anatase wall and high
photocatalytic activity, J. Phys. Chem., 109 (2005) 4947–4952.
- S.M. Klein, V.N. Manoharan, D.J. Pine, F.F. Lange, Synthesis of
spherical polymer and titania photonic crystallites, Langmuir,
21 (2005) 6669–6674.
- H. Shibata, H. Mihara, T. Mukai, T. Ogura, H. Kohno, T. Ohkubo,
H. Sakai, M. Abe, Preparation and formation mechanism of
mesoporous titania particles having crystalline wall, Chem.
Mater., 18 (2006) 2256–2260.
- M. Addamo, V. Augugliaro, A.D. Paola, E. García-López, V.
Loddo, G. Marc, R. Molinari, L. Palmisano, M.S. Preparation,
Characterization and photoactivity of polycrystalline
nanostructured TiO2 catalysts, Phys. Chem. B., 108 (2004)
3303–3310.
- C. Krüger, Polybrominated Biphenyls and Polybrominated
Diphenyl Ethers – Detection and Quantitation in Selected Foods, PhD Thesis, University of Munster, Germany, 1988 (in
German).
- S.H. Wang, E. Raptis, J. Yeh, Ion chromatography for
the determination of sulfate in STEALTH® liposomes, J.
Chromatogr., A, 1039 (2004) 51–58.
- A.Y. Ahmed, T.A. Kandiel, T. Oekermann, D. Bahnemann,
Photocatalytic activities of different well-defined single crystal
TiO2 surfaces: anatase versus rutile, Phys. Chem. Lett., 2
(2011) 2461–2465.
- J. Jia, S. Zhang, P. Wang, H. Wang, Degradation of high
concentration 2,4-dichlorophenol by simultaneous
photocatalytic–enzymatic process using TiO2/UV and laccase,
J. Hazard. Mater., 205–206 (2012) 150–155.
- E.S. Elmolla, M. Chaudhuri, Photocatalytic degradation of
amoxicillin, ampicillin and cloxacillin antibiotics in aqueous
solution using UV/TiO2 and UV/H2O2/TiO2 photocatalysis,
Desalination, 252 (2010) 46–52.
- P. Konieczka, J. Namieśnik, Estimating uncertainty in
analytical procedures based on chromatographic techniques,
J. Chromatogr., A, 1217 (2010) 882–891.
- P. Westerhoff, S.P. Mezyk, W.J. Cooper, D. Minakata, Electron
pulse radiolysis determination of hydroxyl radical rate constants
with Suwannee River fulvic acid and other dissolved organic
matter isolates, Environ. Sci. Technol., 41 (2007), 4640–4646.
- B. Halliwell, H. Kaur, M. Ingelman-Sundbergm, Hydroxylation
of salicylate as an assay for hydroxyl radicals: a cautionary note,
Free Radical Biol. Med., 10 (1991) 439–441.
- Z. Maskos, J.D. Rush, W.H. Koppenol, The hydroxylations of
phenylalanine and tyrosine are similar to that of salicylate, Free
Radical Biol. Med., 8 (1990) 153–162.
- M.E. Lindsey, M.A. Tarr, Quantitation of hydroxyl radical
during Fenton oxidation following a single addition of iron and
peroxide, Chemosphere, 41 (2000) 409–417.
- J.W. Voordeckers, D.E. Fennell, K. Jones, M.M. Häggblom,
Anaerobic biotransformation of tetrabromobisphenol A,
tetrachlorobisphenol A, and bisphenol A in estuarine sediments,
Environ. Sci. Technol., 36 (2002) 696–701.
- N. Schneider, K. Werkmeister, M. Pischetsrieder, Analysis of
nisin A, nisin Z and their degradation products by LCMS/MS,
Food Chem., 127 (2011) 847–854.
- C.I.T. Institute, Biodegradation and Bioaccumulation Date of
Existing Chemicals Based on the CSCL Japan, Tokyo Toxiclogy
and Information Center, Japan Chemical Industry Ecology,
Japan, 1992.
- Y. Ding, L. Zhu, N. Wang, H. Tang, Sulfate radicals
induced degradation of tetrabromobisphenol A with
nanoscaled magnetic CuFe2O4 as a heterogeneous catalyst of
peroxymonosulfate, Appl. Catal., B, 129 (2013) 153–162
- M. Fukushima, Y. Ishida, S. Shigematsu, H. Kuramitz,
S. Nagao, Pattern of oxidation products derived from
tetrabromobisphenol A in a catalytic system comprised of
iron(III)-tetrakis(p-sulfophenyl)porphyrin, KHSO5 and humic
acids, Chemosphere, 80 (2010) 860–865
- Y. Guo, X. Lou, D. Xiao, L. Xu, Z. Wang, J. Liu, Sequential
reduction–oxidation for photocatalytic degradation of
tetrabromobisphenol A: kinetics and intermediates, J. Hazard.
Mater., 241–242 (2012) 301–306.
- R.A. French, A.R. Jacobson, B. Kim, S.L. Isley, R.L. Penn, P.C.
Baveye, Influence of ionic strength, pH, and cation valence on
aggregation kinetics of titanium dioxide nanoparticles, Environ.
Sci. Technol., 43 (2009) 1354–1359.
- S. Horikoshi, T. Miura, M. Kajitani, Photodegradation of
tetrahalobisphenol-A (X=Cl, Br) flame retardants and delineation
of factors affecting the process, Appl. Catal., B, 84 (2008) 797–802.
- K. Hashimoto, H. Irie, A. Fujishima, TiO2 photocatalysis: a
historical overview and future prospects, Jpn. J. Appl. Phys.,
Part 1, 44 (2005) 8269–8285.
- A. Fujishima, K. Hashimoto, T. Watanabe, TiO2 Photocatalysis
Fundamentals and Applications, BKC Publication, Tokyo, 1999.