References
- D. Libotean, J. Giralt, F. Giralt, R. Rallo, T. Wolfe, Y. Cohen,
Neural network approach for modeling the performance of
reverse osmosis membrane desalting, J. Membr. Sci., 326 (2009)
408–419.
- R. Segurado, J.F.A. Madeira, M. Costa, N. Duić, M.G. Carvalho,
Optimization of a wind powered desalination and pumped
hydro storage system, Appl. Energy, 177 (2016) 487–499.
- J.R. Werber, A. Deshmukh, M. Elimelech, Can batch or semibatch
processes save energy in reverse-osmosis desalination?
Desalination, 402 (2017) 109–122.
- E. Dimitriou, E.S. Mohamed, C. Karavas, G. Papadakis,
Experimental comparison of the performance of two reverse
osmosis desalination units equipped with different energy
recovery devices, Desal. Wat. Treat., 55 (2015) 3019–3026.
- E. Dimitriou, E.S. Mohamed, G. Kyriakarakos, G. Papadakis,
Experimental investigation of the performance of a reverse
osmosis desalination unit under full- and part-load operation,
Desal. Wat. Treat., 53 (2014) 3170–3178.
- S. Sobana, R.C. Panda, Development of a transient model for
the desalination of sea/brackish water through reverse osmosis,
Desal. Wat. Treat., 51 (2013) 2755–2767.
- K.A. Al-shayji, S. Al-wadyei, A. Elkamel, Modelling and optimization
of a multistage flash desalination process, Eng. Optim.,
37 (2005) 591–607.
- M. Jafar, A. Zilouchian, Application of Soft Computing for
Desalination Technology, Intelligent Control Systems Using
Soft Computing Methodologies, CRC Press, Boca Raton, FL,
USA, 2001.
- K. Zhani, H. Ben Bacha, Modeling and simulation of a new
design of the SMCEC desalination unit using solar energy,
Desal. Wat. Treat., 21 (2010) 346–356.
- D. Libotean, Modeling the Reverse Osmosis Processes
Performance Using Artificial Neural Networks, PhD
Dissertation, Department of Chemical Engineering, Rovira I
Virgili University, Tarragona, 2007.
- R.W.F. He, D. Han, C. Yue, W.H. Pu, A parametric study of a
humidification dehumidification (HDH) desalination system
using low grade heat sources, Energy Convers. Manage., 105
(2015) 929–937.
- L. Perkovic, T. Novosel, T. Pukšec, B. Cosic, M. Mustafa, G.
Krajacic, N. Duica, Modeling of optimal energy flows for
systems with close integration of sea water desalination and
renewable energy sources: case study for Jordan, Energy
Convers. Manage., 110 (2016) 249–259.
- H.-J. Oh, T.-M. Hwang, S. Lee, A simplified simulation model of
RO systems for seawater desalination, Desalination, 238 (2009)
128–139.
- F.N. Alasfour, H.K. Abdulrahim, Rigorous steady state modeling
of MSF-BR desalination system, Desal. Wat. Treat., 1 (2009)
259–276.
- J.S.R. Jang, ANFIS: Adaptive-Network-Based Fuzzy Inference
System, IEEE Transactions on Systems, Man, and Cybernetics,
Vol. 23, 1993, pp. 665–685.
- J.S.R. Jang, C.-T. Sun, Neuro-Fuzzy Modeling and Control,
Proc. IEEE, 83 (1995) 378–406.
- M. Inal, Determination of dielectric properties of insulator
materials by means of ANFIS: a comparative study, J. Mater.
Process. Technol., 195 (2008) 34–43.
- R. Singh, A. Kainthola, T.N. Singh, Estimation of elastic of rocks
using an ANFIS approach, Appl. Soft Comput., 12 (2012) 40–45.
- A. Khajeh, H. Modarress, B. Rezaee, Application of an adaptive
neuro-fuzzy inference system for solubility prediction of carbon
dioxide in polymers, Expert Syst. Appl., 36 (2009) 5728–5732.
- A. Melit, Artificial Intelligence-Based Modeling for Sizing of a
Stand-Alone Photovoltaic Power System: Proposition for a New
Model Using Neuro-Fuzzy Systems (ANFIS), 3rd International
IEEE Conference on Intelligence Systems, London, UK, 2006,
pp. 606–611.
- A.I. Dounis, G. Leftheriotis, S. Stavrinidis, G. Syrrokostas,
Electrochromic device modeling using an adaptive neuro-fuzzy
inference system: a model-free approach, Energy Build., 110
(2016) 182–194.
- E.S. Mohamed, G. Papadakis, E. Mathioulakis, V. Belessiotis, A
direct-coupled photovoltaic seawater reverse osmosis desalination
system toward battery-based systems — a technical and
economical experimental comparative study, Desalination,
221 (2008) 17–22.
- E.S. Mohamed, G. Papadakis, E. Mathioulakis, V. Belessiotis, An
experimental comparative study of the technical and economic
performance of a small reverse osmosis desalination system
equipped with hydraulic energy recovery unit, Desalination,
194 (2006) 239–250.
- E.S. Mohamed, G. Papadakis, E. Mathioulakis, V. Belessiotis,
The effect of hydraulic energy recovery in a small sea water
reverse osmosis desalination system; experimental and economical
evaluation, Desalination, 184 (2005) 241–246.
- B. Windrow, M.A. Lehr, 39 Years of Adaptive Neural Networks:
Perceptron, Madiline and Backpropagation, Proc. IEEE, Vol. 78,
1990, pp. 1415–1442.
- H. Ying, General SISO Takagi–Sugeno fuzzy systems with linear
rule consequent are universal approximators, IEEE Trans.
Fuzzy Syst., 6 (1998) 582–587.
- T. Tagaki, M. Sugeno, Fuzzy Identification of Systems and Its
Applications to Modeling and Control, IEEE Transactions on
Systems, Man, and Cybernetics, Vol. 15, 1985, pp. 116–132.
- B. Hartmann, O. Banfer, O. Nelles, A. Sodja, L. Teslic, I. Skrjanc,
Supervised hierarchical clustering in fuzzy model identification,
IEEE Trans. Fuzzy Syst., 19 (2011) 1163–1176.
- MATLAB Manual, Fuzzy Logic Toolbox User’s Guide, The
MathWorks Inc., Massachusetts, USA, 2009.
- P. Kofinas, G. Vouros, A.I. Dounis, Energy Management in
Solar Microgrid via Reinforcement Learning, Proc. 9th Hellenic
Conference on Artificial Intelligence (SETN ‘16), Article 12,
ACM, Thessaloniki, Greece, 2016, p. 7.