References

  1. Y. Sun, C. Chen, D. Shao, J. Li, X. Tan, G. Zhao, S. Yang, X. Wang, Enhanced adsorption of ionizable aromatic compounds on humic acid-coated carbonaceous adsorbents, RSC Adv., 2 (2012) 10359–10364.
  2. X. Li, J.J. Pignatello, Y. Wang, B. Xing, New insight into adsorption mechanism of ionizable compounds on carbon nanotubes, Environ. Sci. Technol., 47 (2013) 8334–8341.
  3. H Xu, Y Wan, H. Li, S. Zheng, D. Zhu, Sorption of aromatic ionizable organic compounds to montmorillonites modified by hexadecyltrimethyl ammonium and polydiallyldimethyl ammonium, J. Environ. Qual., 40 (2011) 1895–1902.
  4. E. Ayranci, O. Duman, Apparent molar volumes and isentropic compressibilities of benzene sulfonates and naphthalene sulfonates in aqueous solutions at (293.15, 303.15, 313.15, 323.15, and 333.15) K, J. Chem. Eng. Data, 55 (2010) 947–952.
  5. W.C. Peng, Y. Chen, S.D. Fan, F.B. Zhang, G.L. Zhang, X.B. Fan, Use of 4,4’-dinitrostilbene-2,2’-disulfonic acid wastewater as a raw material for paramycin production, Environ. Sci. Technol., 44 (2010) 9157–9162.
  6. S. Riediker, M.J.F. Suter, W. Giger, Benzene- and naphthalenesulfonates in leachates and plumes of landfills, Water Res., 34 (2000) 2069–2079.
  7. H.M. Gan, S. Shahir, Z. Ibrahim, A. Yahya, Biodegradation of 4-aminobenzenesulfonate by Ralstonia sp. PBA and Hydrogenophaga sp. PBC isolated from textile wastewater treatment plant, Chemosphere, 82 (2011) 507–513.
  8. G. Chen, K.Y. Cheng, M. P. Ginige, A.H. Kaksonen, Aerobic degradation of sulfanilic acid using activated sludge, Water Res., 46 (2012) 145–151.
  9. V.A. Shcherbakova, K.S. Laurinavichyus, N.A. Chuvil’skaya, Y.V. Ryzhmanova, V.K. Akimenko, Anaerobic bacteria involved in the degradation of aromatic sulfonates to methane, Appl. Biochem. Microbiol., 51 (2015) 209–214.
  10. S.J. Li, L. Zhang, H.L. Chen, H. Chai, C.J. Gao, Complex extraction and stripping of H acid wastewater, Desalination, 206 (2007) 92–99.
  11. M. Ravera, D. Musso, F. Gosetti, C. Cassino, E. Gamalero, D. Osella, Oxidative degradation of 1,5-naphthalene disulfonic acid in aqueous solutions by UV-photolysis in the absence and presence of H2O2, Chemosphere, 79 (2010) 144–148.
  12. A. El-Ghenymy, S. Garcia-Segura, R.M. Rodríguez, E. Brillas, M.S.E. Begrani, B.A. Abdelouahid, Optimization of the electro-Fenton and solar photoelectro-Fenton treatments of sulfanilic acid solutions using a pre-pilot flow plant by response surface methodology, J. Hazard. Mater., 221–222 (2012) 288–297.
  13. I. Arslan-Alaton, A.B. Yalabik, T. Olmez-Hanci, Development of experimental design models to predict photo-Fenton oxidation of a commercially important naphthalene sulfonate and its organic carbon content, Chem. Eng. J., 165 (2010) 597–606.
  14. Z. Song, S.R. Edwards, R.G. Treatment of naphthalene-2-sulfonic acid from tannery wastewater by a granular activated carbon fixed bed inoculated with bacterial isolates Arthrobacter globiformis and Comamonas testosteroni, Water Res., 40 (2006) 495–506.
  15. W. Yang, A. Li, C. Fu, J. Fan, Q. Zhang, Adsorption mechanism of aromatic sulfonates onto resins with different matrices, Ind. Eng. Chem. Res., 46 (2007) 6971–6977.
  16. D. Kaušpėdienė, A. Gefenienė, E. Kazlauskienė, R. Ragauskas, A. Selskienė, Simultaneous removal of azo and phthalocyanine dyes from aqueous solutions using weak base anion exchange resin, Water Air Soil Poll., 224 (2013) 1769–1780.
  17. B.C. Pan, Q.X. Zhang, F.W. Meng, X.T. Li, X. Zhang, J.Z. Zheng, W.M. Zhang, B.J. Pan, J.L. Chen, Sorption enhancement of aromatic sulfonates onto an aminated hyper-cross-linked polymer, Environ. Sci. Technol., 39 (2005) 3308–3313.
  18. B.J. Pan, W.M. Zhang, B.C. Pan, H. Qiu, Q.R. Zhang, Q.X. Zhang, S.R. Zheng, Efficient removal of aromatic sulfonates from wastewater by a recyclable polymer: 2-naphthalene sulfonate as a representative pollutant. Environ. Sci. Technol., 42 (2008) 7411–7416.
  19. B.C. Pan, Q.X. Zhang, B.J. Pan, W.M. Zhang, W. Du, H.Q. Ren, Removal of aromatic sulfonates from aqueous media by aminated polymeric sorbents: concentration-dependent selectivity and the application. Micropor. Mesopor. Mat., 116 (2008) 63–69.
  20. H. Zhang, A. Li, J. Sun, P. Li, Adsorption of amphoteric aromatic compounds by hyper-cross-linked resins with amino groups and sulfonic groups, Chem. Eng. J., 217 (2013) 354–362.
  21. P. Ling, F. Liu, L. Li, X. Jing, B. Yin, K. Chen, A. Li, Adsorption of divalent heavy metal ions onto IDA-chelating resins: Simulation of physicochemical structures and elucidation of interaction mechanisms, Talanta, 81 (2010) 424–432.
  22. X. Zhang, R. Bai, Mechanisms and kinetics of humic acid adsorption onto chitosan-coated granules, J. Colloid Interf. Sci., 264 (2003) 30–38.
  23. W. Tao, A. Li, C. Long, H. Qian, D. Xu, J. Chen, Adsorption of 5-sodiosulfoisophthalic acids from aqueous solution onto poly (2-vinylpyridine) resin, J. Hazard. Mater., 175 (2010) 111–116.
  24. J. Rivera-Utrilla, M. Sánchez-Polo, The role of dispersive and electrostatic interactions in the aqueous phase adsorption of naphthalenesulphonic acids on ozone-treated activated carbons, Carbon, 40 (2002) 2685–2691.
  25. P. Li, A.K. SenGupta, Sorption of hydrophobic ionizable organic compounds (HIOCs) onto polymeric ion exchangers, React. Funct. Polym., 60 (2004) 27–39.
  26. K. Nobuhiro, U. Kohei, K. Naohiro, U. Yoshikuni, Exchange characteristics of monocarboxylic acids and monosulfonic acids onto anion-exchange resins, J. Colloid Interf. Sci., 271 (2004) 20–27.
  27. Q. Xie, J. Xie, Z. Wang, D. Wu, Z. Zhang, H. Kong, Adsorption of organic pollutants by surfactant modified zeolite as controlled by surfactant chain length, Micropor. Mesopor. Mat., 179 (2013) 144–150.
  28. P.V. Bonnesen, G.M. Brown, S.D. Alexandratos, L.B. Bavoux, D.J. Presley, V. Patel, R. Ober, B.A. Moyer, Development of bifunctional anion-exchange resins with improved selectivity and sorptive kinetics for pertechnetate: batch-equilibrium experiments, Environ. Sci. Technol., 34 (2000) 3761−3766.
  29. B. Pakzadeh, J.R. Batista, Impacts of cocontaminants on the performances of perchlorate and nitrate specialty ion-exchange resins, Ind. Eng. Chem. Res., 50 (2011) 7484–7493.
  30. Y. Sun, A. Li, Z. Fei, Q. Zhang, S. Wang, Adsorption of tannin acid onto a new aminated macroporous resin from aqueous solution, Chin. J. Polym. Sci., 6 (2007) 621–627.
  31. H. Nie, G. Yang, R. Xu, F. Zhang, Z. Zhou, Z. Zhang, Thermodynamic and kinetic studies on alkoxylation of camphene over cation exchange resin catalysts, Aiche J., 61 (2015) 1925–1932.
  32. M. Lalikoğlu, A. Gök, M. K. Gök, Y.S. Aşçi, Investigation of lactic acid separation by layered double hydroxide: Equilibrium, kinetics, and thermodynamics, J. Chem. Eng. Data, 60 (2015) 3159−3165.
  33. C.W. Cheung, J.F. Porter, G. McKay, Sorption kinetics for the removal of copper and zinc from effluents using bone char, Sep. Purif. Technol., 19 (2000) 55–64.
  34. Y.S. Ho, G. McKay, Pseudo-second order model for sorption processes, Process Biochem., 34 (1999) 451–465.
  35. V. Dulman, S.M. Cucu-Man, I. Bunia, M. Dumitras, Batch and fixed bed column studies on removal of Orange G acid dye by a weak base functionalized polymer, Des. Water Treat., 57 (2016) 14708–14727.
  36. M. Greluk, Z. Hubicki, Evaluation of polystyrene anion exchange resin for removal of reactive dyes from aqueous solutions, Chem. Eng. Res. Des., 91 (2013) 1343–1351.
  37. C. Kaya, A. Şahbaz, Ö. Arar, Ü. Yüksel, M. Yüksel, Removal of tartaric acid by gel and macroporous ion-exchange resins, Des. Water Treat., 55 (2015) 514–521.
  38. Z. Zhang, F. Wang, W. Yang, Z. Yang, A. Li, A comparative study on the adsorption of 8-amino-1-naphthol-3,6-disulfonic acid by a macroporous amination resin, Chem. Eng. J., 283 (2016) 1522–1533.