References

  1. G. Tchobanoglous, H.D. Stensel, R. Tsuchihashi, F. Burton, Wastewater Engineering: Treatment and Resource Recovery, 5th ed., Metcalf & Eddy, McGraw Hill, USA, 2013.
  2. J. Blanco, Development of CPC Solar Collectors for Applications Photochemical Degradation of Persistent Pollutants in Water, Collections Ciemat, Ministry of Science and Culture, Spain, 2003.
  3. J.M. Herrmann, Heterogeneous photocatalysis: state of the art and present applications, Top. Catal., 34 (2005) 49–65.
  4. G. Li Puma, Dimensionless analysis of photocatalytic reactors using suspended solid photocatalysts, Chem. Eng. Res. Des., 83 (2005) 820–826.
  5. J. Araña, C.F. Rodríguez, J.A.H. Melián, O.G. Díaz, J.P. Peña, Comparative study of photocatalytic degradation mechanisms of pyrimethanil, triadimenol, and resorcinol, J. Solar Energy Eng., 130 (2008) 1–8.
  6. D. Friedmann, C. Mendive, D. Bahnemann, TiO2 for water treatment: parameters affecting the kinetics and mechanisms of photocatalysis, Appl. Catal., B, 99 (2010) 398–406.
  7. S. Banerjee, S.C. Pillai, P. Falaras, K.E. O’Shea, J.A. Byrne, D.D. Dionysiou, New insights into the mechanism of visible light photocatalysis, J. Phys. Chem. Lett., 5 (2014) 2543–2554.
  8. L.A. Quiñonez, R. Almanza, Preliminary Model of Radiation UV for the Mexican Republic, First Symposium Processes Advanced Oxidation Plants, Institute of Engineering, Mexico D.F., Memories, UNAM, 2013.
  9. B. Duffie, Solar Engineering of Thermal Processes, 2nd ed., Wiley Interscience, USA, 1991.
  10. F. Fresno, C. Guillard, J.M. Coronado, J.M. Chovelon, D. Tudela, J. Soria, J.M. Herrmann, Photocatalytic degradation of a sulfonylurea herbicide over pure and tin-doped TiO2 photocatalysts, J. Photochem. Photobiol., A, 173 (2005) 13–20.
  11. L. Rizzo, S. Merica, M. Guida, D. Kassinos, V. Belgiorno, Heterogenous photocatalytic degradation kinetics and detoxification of an urban wastewater treatment plant effluent contaminated with pharmaceuticals, Water Res., 43 (2009) 4070–4078.
  12. L. Lloret, G. Eibes, T.A. Lu-Chau, M.T. Moreira, G. Feijoo, J.M. Lema, Laccase-catalyzed degradation of anti-inflammatories and estrogens. Biochem. Eng. J., 51 (2010) 124–131.
  13. S. Wu, L. Zhang, J. Chen, Paracetamol in the environment and its degradation by microorganism, Appl. Microbiol. Biotechnol., 96 (2012) 875–884.
  14. M. Isidori, M. Lavorgna, A. Nardelli, A. Parrella, L. Previtera, M. Rubino, Ecotoxicity of naproxen and its phototransformation products, Sci. Total Environ., 348 (2005) 93–101.
  15. M. DellaGreca, M. Brigante, M. Isidori, A. Nardelli, L. Previtera, M. Rubino, F. Temussi, Phototransformation and ecotoxicity of the drug Naproxen-Na, Environ. Chem. Lett., 1 (2003) 237–241.
  16. J.C. Morales-Mejía, R. Almanza, F. Gutiérrez, Solar photocatalytic oxidation of hydroxy phenols in a CPC reactor with thick TiO2 films, Energy Procedia, 57 (2014) 597–606.
  17. H.P. Baum, J.M. Gordon, Geometric characteristics of ideal nonimaging (CPC) solar collectors with cylindrical absorber, Solar Energy, 33 (1984) 455–458.
  18. R. Winston, J.C. Miñano, P. Benitez, Nonimaging Optics, Elsevier, UK, 2005.
  19. J.C. Morales-Mejía, R. Almanza, UVA Solar Irradiance on Inclined Surfaces 19.4° and Fixed in the South of Mexico City, XXXVIII National Solar Energy Week and XI Congress Iberoamerican, ANES, Congress Memories, Mexico, 2013.
  20. W. Huang, M. Lei, H. Huang, J. Chen, H. Chen, Effect of polyethylene glycol on hydrophilic TiO2 films: porosity-driven superhydrophilicity, Surf. Coat. Technol., 204 (2010) 3954–3961.
  21. J.C. Morales-Mejia, L. Angeles, R. Almanza, Synthesis and characterization of TiO2 porous films for heterogeneous photocatalysis, Comput. Water Energy Environ. Eng., 3 (2014) 36–40.
  22. P. Novotna, J. Krysa, J. Maixner, P. Kluson, P. Novak, Photocatalytic activity of sol–gel TiO2 thin films deposited on soda lime glass and soda lime glass precoated with a SiO2 layer, Surf. Coat. Technol., 204 (2010) 2570–2575.
  23. B. Ohtani, O.O. Prieto-Mahaney, D. Li, R. Abe, What is Degussa (Evonik) P25? Crystalline composition analysis, reconstruction from isolated pure particles and photocatalytic activity test, J. Photochem. Photobiol., A, 216 (2010) 179–182.
  24. J. Yu, H. Yu, B. Cheng, M. Zhou, X. Zhao, Enhanced photocatalytic activity of TiO2 powder (P25) by hydrothermal treatment, J. Mol. Catal. A, 253 (2006) 112–118.
  25. D.C. Hurum, A.G. Agrios, K.A. Gray, T. Rajh, M.C. Thurnauer, Explaining the enhanced photocatalytic activity of Degussa P25 mixed-phase TiO2 using EPR, J. Phys. Chem. B, 107 (2003) 4545–4549.
  26. APHA, AWWA, WEF, Standard Methods for Examination of Water and Wastewater, 22nd ed., APHA, USA, 2012.
  27. R. Day, A. Underwood, Quantitative Analysis, 5th ed., Prentice- Hall Inc., USA, 2001.
  28. L.J.D. Arsov, C. Kormann, W. Plieth, Electrochemical synthesis and in situ Raman spectroscopy of thin films of titanium dioxide, J. Raman Spectrosc., 22 (1991) 573–575.
  29. H.L. Ma, J.Y. Yang, Y. Dai, Y.B. Zhang, B. Lu, G.H. Ma, Raman study of phase transformation of TiO2 rutile single crystal irradiated by infrared femtosecond laser, Appl. Surf. Sci., 253 (2007) 7497–7500.
  30. C.J. Howard, T.M. Sabine, F. Dickson, Structural and thermal parameters for rutile and anatase. Acta Crystallogr., Sect. B, 47 (1991) 462–468.
  31. J.M. Herrmann, Photocatalysis fundamentals revisited to avoid several misconceptions, Appl. Catal., B, 99 (2010) 461–468.
  32. E. Arany, R.K. Szabó, L. Apáti, T. Alapi, I. Ilisz, P. Mazellier, A. Dombi, K. Gajda-Schrantz, Degradation of naproxen by UV, VUV photolysis and their combination, J. Hazard. Mater., 262 (2013) 151–157.
  33. R. Marotta, D. Spasiano, I. Di Somma, R. Andreozzi, Photodegradation of naproxen and its photoproducts in aqueous solution at 254 nm: a kinetic investigation, Water Res., 47 (2013) 373–383.
  34. K.A.K. Musa, L.A. Eriksson, Theoretical study of the phototoxicity of naproxen and the active form of nabumetone, J. Phys. Chem. A, 112 (2008) 10921–10930.
  35. H. Zhang, P. Zhang, Y. Ji, J. Tian, Z. Du, Photocatalytic degradation of four non-steroidal anti-inflammatory drugs in water under visible light by P25-TiO2/tetraethyl orthosilicate film and determination via ultra performance liquid chromatography electrospray tandem mass spectrometry, Chem. Eng. J., 262 (2015) 1108–1115.
  36. R.R. Giri, H. Ozaki, S. Ota, R. Takanami, S. Taniguchi, Degradation of common pharmaceuticals and personal care products in mixed solutions by advanced oxidation techniques, Int. J. Environ. Sci. Technol., 7, (2010) 251–260.
  37. A.Y.C. Tong, R. Braund, D.S. Warren, B.M. Peake, TiO2-assisted photodegradation of pharmaceuticals – a review, Cent. Eur. J. Chem., 10, (2012) 989–1027.
  38. M.J. Benotti, B.D. Stanford, E.C. Wert, S.A. Snyder, Evaluation of a photocatalytic reactor membrane pilot system for the removal of pharmaceuticals and endocrine disrupting compounds from water, Water Res., 43 (2009) 1513–1522.
  39. N. Jallouli, K. Elghniji, O. Hentati, A.R. Ribeiro, A.M.T. Silva, M. Ksibi, UV and solar photo-degradation of naproxen: TiO2 catalyst effect, reaction kinetics, products identification and toxicity assessment, J. Hazard. Mater., 304 (2016) 329–336.
  40. M. Isidori, M. Lavorgna, A. Nardelli, A. Parrella, L. Previtera, M. Rubino, Ecotoxicity of naproxen and its phototransformation products, Sci. Total Environ., 348 (2005) 93–101.