References
   -  G. Tchobanoglous, H.D. Stensel, R. Tsuchihashi, F. Burton,
    Wastewater Engineering: Treatment and Resource Recovery,
    5th ed., Metcalf & Eddy, McGraw Hill, USA, 2013. 
-  J. Blanco, Development of CPC Solar Collectors for Applications
    Photochemical Degradation of Persistent Pollutants in Water,
    Collections Ciemat, Ministry of Science and Culture, Spain,
    2003. 
-  J.M. Herrmann, Heterogeneous photocatalysis: state of the art
    and present applications, Top. Catal., 34 (2005) 49–65. 
-  G. Li Puma, Dimensionless analysis of photocatalytic reactors
    using suspended solid photocatalysts, Chem. Eng. Res. Des.,
    83 (2005) 820–826. 
-  J. Araña, C.F. Rodríguez, J.A.H. Melián, O.G. Díaz, J.P. Peña,
    Comparative study of photocatalytic degradation mechanisms
    of pyrimethanil, triadimenol, and resorcinol, J. Solar Energy
    Eng., 130 (2008) 1–8. 
-  D. Friedmann, C. Mendive, D. Bahnemann, TiO2 for water treatment:
    parameters affecting the kinetics and mechanisms of photocatalysis,
    Appl. Catal., B, 99 (2010) 398–406. 
-  S. Banerjee, S.C. Pillai, P. Falaras, K.E. O’Shea, J.A. Byrne, D.D.
    Dionysiou, New insights into the mechanism of visible light
    photocatalysis, J. Phys. Chem. Lett., 5 (2014) 2543–2554. 
-  L.A. Quiñonez, R. Almanza, Preliminary Model of Radiation
    UV for the Mexican Republic, First Symposium Processes
    Advanced Oxidation Plants, Institute of Engineering, Mexico
    D.F., Memories, UNAM, 2013. 
-  B. Duffie, Solar Engineering of Thermal Processes, 2nd ed.,
    Wiley Interscience, USA, 1991. 
-  F. Fresno, C. Guillard, J.M. Coronado, J.M. Chovelon, D. Tudela,
    J. Soria, J.M. Herrmann, Photocatalytic degradation of a sulfonylurea
	  herbicide over pure and tin-doped TiO2 photocatalysts,
    J. Photochem. Photobiol., A, 173 (2005) 13–20. 
-  L. Rizzo, S. Merica, M. Guida, D. Kassinos, V. Belgiorno,
    Heterogenous photocatalytic degradation kinetics and detoxification
    of an urban wastewater treatment plant effluent contaminated
    with pharmaceuticals, Water Res., 43 (2009) 4070–4078. 
-  L. Lloret, G. Eibes, T.A. Lu-Chau, M.T. Moreira, G. Feijoo, J.M.
    Lema, Laccase-catalyzed degradation of anti-inflammatories
    and estrogens. Biochem. Eng. J., 51 (2010) 124–131. 
-  S. Wu, L. Zhang, J. Chen, Paracetamol in the environment and
    its degradation by microorganism, Appl. Microbiol. Biotechnol.,
    96 (2012) 875–884. 
-  M. Isidori, M. Lavorgna, A. Nardelli, A. Parrella, L. Previtera,
    M. Rubino, Ecotoxicity of naproxen and its phototransformation
    products, Sci. Total Environ., 348 (2005) 93–101. 
-  M. DellaGreca, M. Brigante, M. Isidori, A. Nardelli, L. Previtera,
    M. Rubino, F. Temussi, Phototransformation and ecotoxicity of
    the drug Naproxen-Na, Environ. Chem. Lett., 1 (2003) 237–241. 
-  J.C. Morales-Mejía, R. Almanza, F. Gutiérrez, Solar photocatalytic
    oxidation of hydroxy phenols in a CPC reactor with thick
    TiO2 films, Energy Procedia, 57 (2014) 597–606. 
-  H.P. Baum, J.M. Gordon, Geometric characteristics of ideal nonimaging
    (CPC) solar collectors with cylindrical absorber, Solar
    Energy, 33 (1984) 455–458. 
-  R. Winston, J.C. Miñano, P. Benitez, Nonimaging Optics,
    Elsevier, UK, 2005. 
-  J.C. Morales-Mejía, R. Almanza, UVA Solar Irradiance on Inclined
    Surfaces 19.4° and Fixed in the South of Mexico City, XXXVIII
    National Solar Energy Week and XI Congress Iberoamerican,
    ANES, Congress Memories, Mexico, 2013. 
-  W. Huang, M. Lei, H. Huang, J. Chen, H. Chen, Effect of polyethylene
    glycol on hydrophilic TiO2 films: porosity-driven
    superhydrophilicity, Surf. Coat. Technol., 204 (2010) 3954–3961. 
-  J.C. Morales-Mejia, L. Angeles, R. Almanza, Synthesis and characterization
    of TiO2 porous films for heterogeneous photocatalysis,
    Comput. Water Energy Environ. Eng., 3 (2014) 36–40. 
-  P. Novotna, J. Krysa, J. Maixner, P. Kluson, P. Novak,
    Photocatalytic activity of sol–gel TiO2 thin films deposited on
    soda lime glass and soda lime glass precoated with a SiO2 layer,
    Surf. Coat. Technol., 204 (2010) 2570–2575. 
-  B. Ohtani, O.O. Prieto-Mahaney, D. Li, R. Abe, What is Degussa
    (Evonik) P25? Crystalline composition analysis, reconstruction
    from isolated pure particles and photocatalytic activity test,
    J. Photochem. Photobiol., A, 216 (2010) 179–182. 
-  J. Yu, H. Yu, B. Cheng, M. Zhou, X. Zhao, Enhanced photocatalytic
    activity of TiO2 powder (P25) by hydrothermal treatment,
    J. Mol. Catal. A, 253 (2006) 112–118. 
-  D.C. Hurum, A.G. Agrios, K.A. Gray, T. Rajh, M.C. Thurnauer,
    Explaining the enhanced photocatalytic activity of Degussa
    P25 mixed-phase TiO2 using EPR, J. Phys. Chem. B, 107 (2003)
    4545–4549. 
-  APHA, AWWA, WEF, Standard Methods for Examination of
    Water and Wastewater, 22nd ed., APHA, USA, 2012. 
-  R. Day, A. Underwood, Quantitative Analysis, 5th ed., Prentice-
    Hall Inc., USA, 2001. 
-  L.J.D. Arsov, C. Kormann, W. Plieth, Electrochemical synthesis
    and in situ Raman spectroscopy of thin films of titanium
    dioxide,
    J. Raman Spectrosc., 22 (1991) 573–575. 
-  H.L. Ma, J.Y. Yang, Y. Dai, Y.B. Zhang, B. Lu, G.H. Ma, Raman
    study of phase transformation of TiO2 rutile single crystal irradiated
    by infrared femtosecond laser, Appl. Surf. Sci., 253 (2007)
    7497–7500. 
-  C.J. Howard, T.M. Sabine, F. Dickson, Structural and thermal
    parameters for rutile and anatase. Acta Crystallogr., Sect. B,
    47 (1991) 462–468. 
-  J.M. Herrmann, Photocatalysis fundamentals revisited to avoid
    several misconceptions, Appl. Catal., B, 99 (2010) 461–468. 
-  E. Arany, R.K. Szabó, L. Apáti, T. Alapi, I. Ilisz, P. Mazellier,
    A. Dombi, K. Gajda-Schrantz, Degradation of naproxen by
    UV, VUV photolysis and their combination, J. Hazard. Mater.,
    262 (2013) 151–157. 
-  R. Marotta, D. Spasiano, I. Di Somma, R. Andreozzi,
    Photodegradation of naproxen and its photoproducts in aqueous
    solution at 254 nm: a kinetic investigation, Water Res.,
    47 (2013) 373–383. 
-  K.A.K. Musa, L.A. Eriksson, Theoretical study of the phototoxicity
    of naproxen and the active form of nabumetone, J. Phys.
    Chem. A, 112 (2008) 10921–10930. 
-  H. Zhang, P. Zhang, Y. Ji, J. Tian, Z. Du, Photocatalytic degradation
    of four non-steroidal anti-inflammatory drugs in water
    under visible light by P25-TiO2/tetraethyl orthosilicate film and
    determination via ultra performance liquid chromatography
    electrospray tandem mass spectrometry, Chem. Eng. J., 262
    (2015) 1108–1115. 
-  R.R. Giri, H. Ozaki, S. Ota, R. Takanami, S. Taniguchi,
    Degradation of common pharmaceuticals and personal care
    products in mixed solutions by advanced oxidation techniques,
    Int. J. Environ. Sci. Technol., 7, (2010) 251–260. 
-  A.Y.C. Tong, R. Braund, D.S. Warren, B.M. Peake, TiO2-assisted
    photodegradation of pharmaceuticals – a review, Cent. Eur. J.
    Chem., 10, (2012) 989–1027. 
-  M.J. Benotti, B.D. Stanford, E.C. Wert, S.A. Snyder, Evaluation of
    a photocatalytic reactor membrane pilot system for the removal
    of pharmaceuticals and endocrine disrupting compounds from
    water, Water Res., 43 (2009) 1513–1522. 
-  N. Jallouli, K. Elghniji, O. Hentati, A.R. Ribeiro, A.M.T. Silva, M.
    Ksibi, UV and solar photo-degradation of naproxen: TiO2 catalyst
    effect, reaction kinetics, products identification and toxicity
    assessment, J. Hazard. Mater., 304 (2016) 329–336. 
-  M. Isidori, M. Lavorgna, A. Nardelli, A. Parrella, L. Previtera,
    M. Rubino, Ecotoxicity of naproxen and its phototransformation
	  products, Sci. Total Environ., 348 (2005) 93–101.