References

  1. J. Fawell, M. Nieuwenhuijsen, Contaminants in drinking water, Br. Med. Bull., 68 (2003) 199–208.
  2. WHO/UNICEF, Progress on Sanitation and Drinking-water – 2015 Update and MDG Assessment, Joint Monitoring Programme: World Health Organization and United Nations Children Education Fund, 2015, p. 1.
  3. United Nations, Transforming Our World: The 2030 Agenda for Sustainable Development, A/RES/70/1, 2015.
  4. N.A. Oladoja, S. Hu, J.E. Drewes, B. Helmreich, Insight into the defluoridation efficiency of nano magnesium oxide in groundwater system contaminated with hexavalent chromium and fluoride, Sep. Purif. Technol., 162 (2016) 195–202.
  5. S.V. Jadhav, E. Bringas, G.D. Yadav, V.K. Rathod, I. Ortiz, K.V. Marathe, Arsenic and fluoride contaminated groundwaters: a review of current technologies for contaminants removal, J. Environ. Manage., 162 (2015) 306–325.
  6. T. Thompson, J. Fawell, S. Kunikane, D. Jackson, S. Appleyard, P. Callan, J. Bartram, P. Kingston, Chemical Safety of Drinking Water: Assessing Priorities for Risk Management, World Health Organization, Geneva, 2007.
  7. P. Miretzky, A.F. Cirelli, Fluoride removal from water by chitosan derivatives and composites: a review, J. Fluor. Chem., 132 (2011) 231–240.
  8. K.P. Raven, A. Jain, R.H. Loeppert, Arsenite and arsenate adsorption on ferrihydrite: kinetics, equilibrium and adsorption envelopes, Environ. Sci. Technol., 32 (1998) 344–349.
  9. Q. Guo, J. Tian, Removal of fluoride and arsenate from aqueous solution by hydrocalumite via precipitation and anion exchange, Chem. Eng. J., 231 (2013) 121–131.
  10. WHO, Guidelines for Drinking Water Quality, World Health Organization, Vol. 1, 2011, p. 178.
  11. A.L. Rose, T.D. Waite, Kinetic model for Fe(II) oxidation in seawater in the absence and presence of natural organic matter, Environ. Sci. Technol., 36 (2002) 433–444.
  12. Y. Tian, M. Wu, R. Liu, D. Wang, X. Lin, W. Liu, L. Ma, Y. Li, Y. Huang, Modified native cellulose fibres – a novel efficient adsorbent for both fluoride and arsenic, J. Hazard. Mater., 185 (2011) 93–100.
  13. R. Liu, W. Gong, H. Lan, T. Yang, H. Liu, J. Qu, Simultaneous removal of arsenate and fluoride by iron and aluminum binary oxide: competitive adsorption effects, Sep. Purif. Technol., 92 (2012) 100–105.
  14. V. Kumar, N. Talreja, D. Deva, N. Sankararamakrishnan, A. Sharma, N. Verma, Development of bi-metal doped micro- and nano multi-functional polymeric adsorbents for the removal of fluoride and arsenic(V) from wastewater, Desalination, 282 (2011) 27–38.
  15. M. Sarkar, A. Banerjee, P.P. Pramanick, A.R. Sarkar, Use of laterite for the removal of fluoride from contaminated drinking water, J. Colloid Interface Sci., 302 (2006) 432–441.
  16. E. Henden, T.D. Ciftci, Separation of Arsenic from Waters using Inorganic Adsorbents, M. Bryjak, N. Kabay, B.L. Rivas, B. Jochen, Eds., Innovative Materials and Methods for Water Treatment: Solutions for Arsenic and Chromium Removal, CRC Press, Leiden, 2016, pp. 67–78.
  17. M.H. Stanic, M.E. Ravancic, A. Flanagan, A review on adsorption of fluoride from aqueous solution, Materials, 7 (2014) 6317–6366.
  18. P.G. Tratnyek, R.L. Johnson, Nanotechnologies for environmental cleanup, Nano Today, 1 (2006) 44–48.
  19. S.C.N. Tang, I.M.C. Lo, Magnetic nanoparticles: essential factors for sustainable environmental applications, Water Res., 47 (2013) 2613–2632.
  20. L. Feng, M. Cao, X. Ma, Y. Zhu, C. Hu, Superparamagnetic high surface area Fe3O4 nanoparticles as adsorbents for arsenic removal, J. Hazard. Mater., 217–218 (2012) 439–446.
  21. S.R. Chowdhury, E.K. Yanful, Arsenic and chromium removal by mixed magnetite-maghemite nanoparticles and the effect of phosphate on removal, J. Environ. Manage., 91 (2010) 2238–2247.
  22. E. Christina, P. Viswanathan, Development of a novel nanobiosorbent for the removal of fluoride from water, Chin. J. Chem. Eng., 23 (2015) 924–933.
  23. C. Zhang, L. Chen, T.J. Wang, C.L. Su, Y. Jin, Synthesis and properties of a magnetic core–shell composite nano-adsorbent for fluoride removal from drinking water, Appl. Surf. Sci., 317 (2014) 552–559.
  24. M.D. Abramoff, P.J. Magalhaes, S.J. Ram, Image Processing with ImageJ, Biophoton. Int., 11 (2004) 36–42.
  25. ImageJ Software Version 1.51c, 2016. Available from: rsb.info. nih.gov-ij
  26. P. Velusamy, S.C. Hung, A. Shritama, S.G. Kumar, V. Jeyanthi, K. Pandian, Synthesis of oleic acid coated iron oxide nanoparticles and its role in anti-biofilm activity against clinical isolates of bacterial pathogens, J. Taiwan Inst. Chem. Eng., 59 (2016) 450–456.
  27. C. Gao, Y. Wan, C. Yang, K. Dai, T. Tang, H. Luo, J. Wang, Preparation and characterization of bacterial cellulose sponge with hierarchical pore structure as tissue engineering scaffold, J. Porous Mater., 18 (2011) 139–145.
  28. J. Guo, J.M. Catchmark, Surface area and porosity of acid hydrolyzed cellulose nanowhiskers and cellulose produced by Gluconacetobacter xylinus, Carbohydr. Polym., 87 (2012) 1026–1037.
  29. W. Li, C.Y. Cao, L.Y. Wu, M.F. Ge, W.G. Song, Superb fluoride and arsenic removal performance of highly ordered mesoporous aluminas, J. Hazard. Mater., 198 (2011) 143–150.
  30. H. Schwegmann, A.J. Feitz, F.H. Frimmel, Influence of the zeta potential on the sorption and toxicity of iron oxide nanoparticles on S. cerevisiae and E. coli, J. Colloid Interface Sci., 347 (2010) 43–48.
  31. T.C. Prathna, N. Chandrasekaran, A.M. Raichur, A. Mukherjee, Biomimetic synthesis of silver nanoparticles by Citrus limon (lemon) aqueous extract and theoretical prediction of particle size, Colloids Surf., B, 82 (2011) 152–159.
  32. D. Mohan, C.U. Pittmann Jr., Arsenic removal from water/wastewater using adsorbents—a critical review, J. Hazard. Mater., 142 (2007) 1–53.
  33. M. Bhaumika, T.Y. Leswifia, A. Maity, V.V. Srinivasu, M.S. Onyango, Removal of fluoride from aqueous solution by polypyrrole/Fe3O4 magnetic nanocomposite, J. Hazard. Mater., 186 (2011) 150–159.
  34. I. Langmuir, The constitution and fundamental properties of solid and liquids. Part I. Solids, J. Am. Chem. Soc., 38 (1916) 2221–2295.
  35. H. Freundlich, Tiber die adsorption in Losungen, Z. Phys. Chem., 57 (1906) 385–470.
  36. Y. Han, X. Wu, Y. Ma, L. Gong, F. Qu, H. Fan, Porous SnO2 nanowire bundles for photocatalyst and Li ion battery applications, CrystEngComm, 13 (2011) 3506–3510.
  37. W. Tang, Q. Li, S. Gao, J.K. Shang, Arsenic (III,V) removal from aqueous solution by ultrafine 𝛼-Fe2O3 nanoparticles synthesized from solvent thermal method, J. Hazard. Mater., 192 (2011) 131–138.
  38. L.S. Zhong, J.S. Hu, H.P. Liang, A.M. Cao, W.G. Song, L.J. Wan, Self-assembled 3D flowerlike iron oxide nanostructures and their application in water treatment, Adv. Mater., 18 (2006) 2426–2431.
  39. M.M. Dubinin, L.V. Radushkevich, Equation of the Characteristic Curve of Activated Charcoal, Proc. Academy of Sciences, Physical Chemistry Section, USSR, Vol. 55, 1947, pp. 331–333.
  40. L. Yan, S. Hu, C. Jing, Recent progress of arsenic adsorption on TiO2 in the presence of coexisting ions: a review, J. Environ. Sci., 49 (2016) 74–85.
  41. J. Cui, J. Du, S. Yu, C. Jing, T. Chan, Groundwater arsenic removal using granular TiO2: integrated laboratory and field study, Environ. Sci. Pollut. Res., 22 (2015) 8224–8234.
  42. R.I. Yousef, B. El-Eswed, A. Al-Muhtaseb, Adsorption characteristics of natural xeolites as solid adsorbents for phenol removal from aqueous solution: kinetics, mechanism and thermodynamic studies, Chem. Eng. J., 171 (2011) 1143–1149.
  43. S. Lagergren, About the theory of so-called adsorption of soluble substances, K. Sven. Vetenskapsakad. Handl., 24 (1898) 1–39.
  44. J. Wang, W. Xu, L. Chen, X. Huang, J. Liu, Preparation and evaluation of magnetic nanoparticles impregnated chitosan beads for arsenic removal from water, Chem. Eng. J., 251 (2014) 25–34.