References
- J. Fawell, M. Nieuwenhuijsen, Contaminants in drinking water,
Br. Med. Bull., 68 (2003) 199–208.
- WHO/UNICEF, Progress on Sanitation and Drinking-water
– 2015 Update and MDG Assessment, Joint Monitoring
Programme: World Health Organization and United Nations
Children Education Fund, 2015, p. 1.
- United Nations, Transforming Our World: The 2030 Agenda for
Sustainable Development, A/RES/70/1, 2015.
- N.A. Oladoja, S. Hu, J.E. Drewes, B. Helmreich, Insight into
the defluoridation efficiency of nano magnesium oxide in
groundwater system contaminated with hexavalent chromium
and fluoride, Sep. Purif. Technol., 162 (2016) 195–202.
- S.V. Jadhav, E. Bringas, G.D. Yadav, V.K. Rathod, I. Ortiz, K.V.
Marathe, Arsenic and fluoride contaminated groundwaters:
a review of current technologies for contaminants removal, J.
Environ. Manage., 162 (2015) 306–325.
- T. Thompson, J. Fawell, S. Kunikane, D. Jackson, S. Appleyard,
P. Callan, J. Bartram, P. Kingston, Chemical Safety of Drinking
Water: Assessing Priorities for Risk Management, World Health
Organization, Geneva, 2007.
- P. Miretzky, A.F. Cirelli, Fluoride removal from water by
chitosan derivatives and composites: a review, J. Fluor. Chem.,
132 (2011) 231–240.
- K.P. Raven, A. Jain, R.H. Loeppert, Arsenite and arsenate
adsorption on ferrihydrite: kinetics, equilibrium and adsorption
envelopes, Environ. Sci. Technol., 32 (1998) 344–349.
- Q. Guo, J. Tian, Removal of fluoride and arsenate from
aqueous solution by hydrocalumite via precipitation and anion
exchange, Chem. Eng. J., 231 (2013) 121–131.
- WHO, Guidelines for Drinking Water Quality, World Health
Organization, Vol. 1, 2011, p. 178.
- A.L. Rose, T.D. Waite, Kinetic model for Fe(II) oxidation in
seawater in the absence and presence of natural organic matter,
Environ. Sci. Technol., 36 (2002) 433–444.
- Y. Tian, M. Wu, R. Liu, D. Wang, X. Lin, W. Liu, L. Ma, Y. Li,
Y. Huang, Modified native cellulose fibres – a novel efficient
adsorbent for both fluoride and arsenic, J. Hazard. Mater., 185
(2011) 93–100.
- R. Liu, W. Gong, H. Lan, T. Yang, H. Liu, J. Qu, Simultaneous
removal of arsenate and fluoride by iron and aluminum binary
oxide: competitive adsorption effects, Sep. Purif. Technol., 92
(2012) 100–105.
- V. Kumar, N. Talreja, D. Deva, N. Sankararamakrishnan, A.
Sharma, N. Verma, Development of bi-metal doped micro- and
nano multi-functional polymeric adsorbents for the removal
of fluoride and arsenic(V) from wastewater, Desalination, 282
(2011) 27–38.
- M. Sarkar, A. Banerjee, P.P. Pramanick, A.R. Sarkar, Use of
laterite for the removal of fluoride from contaminated drinking
water, J. Colloid Interface Sci., 302 (2006) 432–441.
- E. Henden, T.D. Ciftci, Separation of Arsenic from Waters
using Inorganic Adsorbents, M. Bryjak, N. Kabay, B.L. Rivas,
B. Jochen, Eds., Innovative Materials and Methods for Water
Treatment: Solutions for Arsenic and Chromium Removal, CRC
Press, Leiden, 2016, pp. 67–78.
- M.H. Stanic, M.E. Ravancic, A. Flanagan, A review on
adsorption of fluoride from aqueous solution, Materials, 7
(2014) 6317–6366.
- P.G. Tratnyek, R.L. Johnson, Nanotechnologies for
environmental cleanup, Nano Today, 1 (2006) 44–48.
- S.C.N. Tang, I.M.C. Lo, Magnetic nanoparticles: essential factors
for sustainable environmental applications, Water Res., 47
(2013) 2613–2632.
- L. Feng, M. Cao, X. Ma, Y. Zhu, C. Hu, Superparamagnetic
high surface area Fe3O4 nanoparticles as adsorbents for arsenic
removal, J. Hazard. Mater., 217–218 (2012) 439–446.
- S.R. Chowdhury, E.K. Yanful, Arsenic and chromium removal
by mixed magnetite-maghemite nanoparticles and the effect
of phosphate on removal, J. Environ. Manage., 91 (2010)
2238–2247.
- E. Christina, P. Viswanathan, Development of a novel nanobiosorbent
for the removal of fluoride from water, Chin. J.
Chem. Eng., 23 (2015) 924–933.
- C. Zhang, L. Chen, T.J. Wang, C.L. Su, Y. Jin, Synthesis and
properties of a magnetic core–shell composite nano-adsorbent
for fluoride removal from drinking water, Appl. Surf. Sci., 317
(2014) 552–559.
- M.D. Abramoff, P.J. Magalhaes, S.J. Ram, Image Processing with
ImageJ, Biophoton. Int., 11 (2004) 36–42.
- ImageJ Software Version 1.51c, 2016. Available from: rsb.info.
nih.gov-ij
- P. Velusamy, S.C. Hung, A. Shritama, S.G. Kumar, V. Jeyanthi, K.
Pandian, Synthesis of oleic acid coated iron oxide nanoparticles
and its role in anti-biofilm activity against clinical isolates of
bacterial pathogens, J. Taiwan Inst. Chem. Eng., 59 (2016) 450–456.
- C. Gao, Y. Wan, C. Yang, K. Dai, T. Tang, H. Luo, J. Wang,
Preparation and characterization of bacterial cellulose sponge
with hierarchical pore structure as tissue engineering scaffold,
J. Porous Mater., 18 (2011) 139–145.
- J. Guo, J.M. Catchmark, Surface area and porosity of acid
hydrolyzed cellulose nanowhiskers and cellulose produced
by Gluconacetobacter xylinus, Carbohydr. Polym., 87 (2012)
1026–1037.
- W. Li, C.Y. Cao, L.Y. Wu, M.F. Ge, W.G. Song, Superb fluoride
and arsenic removal performance of highly ordered mesoporous
aluminas, J. Hazard. Mater., 198 (2011) 143–150.
- H. Schwegmann, A.J. Feitz, F.H. Frimmel, Influence of the zeta
potential on the sorption and toxicity of iron oxide nanoparticles
on S. cerevisiae and E. coli, J. Colloid Interface Sci., 347 (2010)
43–48.
- T.C. Prathna, N. Chandrasekaran, A.M. Raichur, A. Mukherjee,
Biomimetic synthesis of silver nanoparticles by Citrus limon (lemon) aqueous extract and theoretical prediction of particle
size, Colloids Surf., B, 82 (2011) 152–159.
- D. Mohan, C.U. Pittmann Jr., Arsenic removal from water/wastewater using adsorbents—a critical review, J. Hazard.
Mater., 142 (2007) 1–53.
- M. Bhaumika, T.Y. Leswifia, A. Maity, V.V. Srinivasu, M.S.
Onyango, Removal of fluoride from aqueous solution by
polypyrrole/Fe3O4 magnetic nanocomposite, J. Hazard. Mater.,
186 (2011) 150–159.
- I. Langmuir, The constitution and fundamental properties of
solid and liquids. Part I. Solids, J. Am. Chem. Soc., 38 (1916)
2221–2295.
- H. Freundlich, Tiber die adsorption in Losungen, Z. Phys.
Chem., 57 (1906) 385–470.
- Y. Han, X. Wu, Y. Ma, L. Gong, F. Qu, H. Fan, Porous SnO2
nanowire bundles for photocatalyst and Li ion battery
applications, CrystEngComm, 13 (2011) 3506–3510.
- W. Tang, Q. Li, S. Gao, J.K. Shang, Arsenic (III,V) removal from
aqueous solution by ultrafine 𝛼-Fe2O3 nanoparticles synthesized
from solvent thermal method, J. Hazard. Mater., 192 (2011)
131–138.
- L.S. Zhong, J.S. Hu, H.P. Liang, A.M. Cao, W.G. Song, L.J. Wan,
Self-assembled 3D flowerlike iron oxide nanostructures and
their application in water treatment, Adv. Mater., 18 (2006)
2426–2431.
- M.M. Dubinin, L.V. Radushkevich, Equation of the
Characteristic Curve of Activated Charcoal, Proc. Academy of
Sciences, Physical Chemistry Section, USSR, Vol. 55, 1947, pp.
331–333.
- L. Yan, S. Hu, C. Jing, Recent progress of arsenic adsorption on
TiO2 in the presence of coexisting ions: a review, J. Environ. Sci.,
49 (2016) 74–85.
- J. Cui, J. Du, S. Yu, C. Jing, T. Chan, Groundwater arsenic
removal using granular TiO2: integrated laboratory and field
study, Environ. Sci. Pollut. Res., 22 (2015) 8224–8234.
- R.I. Yousef, B. El-Eswed, A. Al-Muhtaseb, Adsorption
characteristics of natural xeolites as solid adsorbents for phenol
removal from aqueous solution: kinetics, mechanism and
thermodynamic studies, Chem. Eng. J., 171 (2011) 1143–1149.
- S. Lagergren, About the theory of so-called adsorption of
soluble substances, K. Sven. Vetenskapsakad. Handl., 24 (1898)
1–39.
- J. Wang, W. Xu, L. Chen, X. Huang, J. Liu, Preparation and
evaluation of magnetic nanoparticles impregnated chitosan
beads for arsenic removal from water, Chem. Eng. J., 251 (2014)
25–34.