References

  1. I. Reid, Glucocorticoid-induced osteoporosis, Best Pract. Res. Clin. Endocrinol. Metab., 14 (2000) 279–298.
  2. H. Schacke, W. Docke, K. Asadullah, Mechanisms involved in the side effects of glucocorticoids, Pharmacol. Ther., 96 (2002) 23–43.
  3. W. Sim, J. Lee, J. Oh, Occurrence and fate of pharmaceuticals in wastewater treatment plants and rivers in Korea, Environ. Pollut., 158 (2010) 1938–1947.
  4. D.R. Arsand, K. Kummerer, A.F. Martins, Removal of dexamethasone from aqueous solution and hospital wastewater by electrocoagulation, Sci. Total Environ., 443 (2013) 351–357.
  5. P. Herrero, F. Borrul, P. Pocurull, Determination of glucocorticoids in sewage and river waters by ultrahigh performance liquid chromatography–tandem mass spectrometry, J. Chromatogr. A, 1224 (2012) 19–26.
  6. M. Jaishankar, B. Mathew, Biosorption of few heavy metal ions using agricultural wastes, J. Environ. Pollut. Human Health, 2 (2014) 1–6.
  7. M. Jain, V.K. Garg, K. Kadirvelu, Chromium(VI) removal from aqueous system using Helianthus annuus (sunflower) stem waste, J. Hazard. Mater., 162 (2009) 365–372.
  8. G. Blazquez, M.A. Martin-Lara, E. Dionisio-Ruiz, G. Tenorio, M. Calero, Copper biosorption by pine cone shell and thermal decomposition study of the exhausted biosorbent, J. Ind. Eng. Chem., 18 (2012) 1741–1750.
  9. N. Fiol, I. Villaescusa, M. Martinez, N. Miralles, J. Poch, J. Serarols, Sorption of Pb(II), Ni(II), Cu(II) and Cd(II) from aqueous solution by olive stone waste, Sep. Purif. Technol., 50 (2006) 132–140.
  10. M.A. Acheampong, K. Pakshirajan, A.P. Annachhatre, P. Lens, Removal of Cu(II) by biosorption onto coconut shell in fixedbed column systems, J. Ind. Eng. Chem., 19 (2013) 841–848.
  11. A.H. Al-Dujaili, A.M. Awwad, N.M. Salem, Biosorption of cadmium (II) onto loquat leaves (Eriobotrya japonica) and their ash from aqueous solution, equilibrium, kinetics, and thermodynamic studies, Int. J. Ind. Chem., 3 (2012) 22–29.
  12. A.I. Amouei, A.A. Amooey, F. Asgharzadeh, Cadmium removal from aqueous solution by canola residues: adsorption equilibrium and kinetics, Iran. J. Chem. Eng., 10 (2013) 39–50.
  13. A. Keshtkar, M. Hassan, Biosorption of thorium from aqueous solution by Ca-pretreated brown algae Cystoseira indica, Korean J. Chem. Eng., 31 (2014) 289–295.
  14. F.J. Cerino Cordova, P.E. Diaz Flores, R.B. Garcia Reyes, Biosorption of Cu(II) and Pb(II) from aqueous solutions by chemically modified spent coffee grains, Int. J. Environ. Sci. Technol., 10 (2013) 611–622.
  15. W. Wibowo, T. Utari, R. Yunarti, Anion exchange capacity of chromate on modified zeolite clinoptilolite with HDTMA-Br and its regeneration, Makara Sains, 15 (2011) 53–57.
  16. M. Ghiaci, R. Kia, A. Abbaspur, F. Seyedeyn-Azad, Adsorption of chromate by surfactant-modified zeolites and MCM-41 molecular sieve, Sep. Purif. Technol., 40 (2004) 285–295.
  17. V.O. Vasylechko, G.V. Gryshchouk, Yu.B. Kuzma, V.P. Zakoronskiy, L.O. Vasylechko, L.O. Lebedynets, M.B. Kalytovska, Adsorption of cadmium on acid-modified Transcarpathian clinoptilolite, Microporous Mesoporous Mater., 60 (2003) 183–196.
  18. P. Chutia, S. Kato, T. Kojima, S. Satokawa, Adsorption of As(V) on surfactant-modified natural zeolites, J. Hazard. Mater., 162 (2009) 204–211.
  19. A. Naghash, A. Nezamzadeh-Ejhieh, Comparison of the efficiency of modified clinoptilolite with HDTMA and HDP surfactants for the removal of phosphate in aqueous solutions, J. Ind. Eng. Chem., 31 (2015) 185–191.
  20. A. Nezamzadeh-Ejhieh, S. Tavakoli-Ghinani, Effect of a nanosized natural clinoptilolite modified by the hexadecyltrimethyl ammonium surfactant on cephalexin drug delivery, C.R. Chimie., 17 (2014) 49–61.
  21. M. Borandegi, A. Nezamzadeh-Ejhieh, Enhanced removal efficiency of clinoptilolite nano-particles toward Co(II) from aqueous solution by modification with glutamic acid, Colloids Surf., A, 479 (2015) 35–45.
  22. S. Mousavi-Mortazavi, A. Nezamzadeh-Ejhieh, Supported iron oxide onto an Iranian clinoptilolite as a heterogeneous catalyst for photodegradation of furfural in a wastewater sample, Desal. Wat. Treat., 57 (2016) 10802–10814.
  23. A. Nezamzadeh-Ejhieh, M. Bahrami, Investigation of the photocatalytic activity of supported ZnO–TiO2 on clinoptilolite nano-particles towards photodegradation of wastewatercontained phenol, Desal. Wat. Treat., 55 (2015) 1096–1104.
  24. Q. Du, S. Liu, Z. Cao, Y. Wang, Ammonia removal from aqueous solution using natural Chinese clinoptilolite, Sep. Purif. Technol., 44 (2005) 229–234.
  25. N. Miladinovic, L. Weatherley, J. Opez-Ruiz, Ammonia removal from saline wastewater by ion exchange, Water Air Soil Pollut., 4 (2004) 169–177.
  26. K. Saltali, A. Sari, M. Aydin, Removal of ammonium ion from aqueous solution by natural Turkish (Yildizeli) zeolite for environmental quality, J. Hazard. Mater., 141 (2007) 258–263.
  27. Y. Ho, J. Porter, G. Mckay, Equilibrium isotherm studies for the sorption of divalent metal ions onto peat: copper, nickel and lead single component systems, Water Air Soil Pollut., 141 (2002) 1–33.
  28. D. Karadag, Y. Koc, M. Turan, M. Ozturk, A comparative study of linear and non-linear regression analysis for ammonium exchange by clinoptilolite zeolite, J. Hazard. Mater., 144 (2007) 432–437.
  29. Y. Ho, Isotherms for the sorption of lead onto peat: comparison of linear and non-linear methods, Pol. J. Environ. Stud., 15 (2006) 81–86.
  30. Y. Ho, Second-order kinetic model for the sorption of cadmium onto tree fern: a comparison of linear and non-linear methods, Water Res., 40 (2006) 119–125.
  31. I. Ghodbane, L. Nouri, O. Hamdaoui, M. Chiha, Kinetic and equilibrium study for the sorption of cadmium(II) ions from aqueous phase by eucalyptus bark, J. Hazard. Mater., 152 (2008) 148–158.
  32. Y. Ho, W. Chiu, C. Wang, Regression analysis for the sorption isotherms of basic dyes on sugarcane dust, Bioresour. Technol., 96 (2005) 1285–1291.
  33. S. Kundu, A.K. Gupta, Arsenic adsorption onto iron oxidecoated cement (IOCC): regression analysis of equilibrium data with several isotherm models and their optimization, Chem. Eng. J., 122 (2006) 93–106.
  34. V.S. Mane, I.D. Mall, V.C. Srivastava, Kinetic and equilibrium isotherm studies for the adsorptive removal of Brilliant Green dye from aqueous solution by rice husk ash, J. Environ. Manage., 84 (2007) 390–400.
  35. R.B. Friedrich, A. Ravanello, L.C. Cichota, Validation of a simple and rapid UV spectrophotometric method for dexamethasone assay in tablets, Quim. Nova, 32 (2009) 1052–1054.
  36. APHA, AWWA, WEF, Standard Methods for Examination of Water and Wastewater, 22nd ed., American Public Health Association, Washington, D.C., USA, 2012, p. 1360.
  37. M. Heidari-Chaleshtori, A. Nezamzadeh-Ejhieh, Clinoptilolite nano-particles modified with aspartic acid for removal of Cu(II) from aqueous solutions: Isotherms and kinetic aspects, New J. Chem., 39 (2015) 9396–9406.
  38. S.N. Mohseni, A.A. Amooey, H. Tashakkorian, A.I. Amouei, Removal of dexamethasone from aqueous solutions using modified clinoptilolite zeolite (equilibrium and kinetic), Int. J. Environ. Sci. Technol., 13 (2016) 2261–2268.
  39. M. Jain, V.K. Garg, K. Kadirvelu, Equilibrium and kinetic studies for sequestration of Cr(VI) from simulated wastewater using sunflower waste biomass, J. Hazard. Mater., 171 (2009) 328–334.
  40. K.Y. Foo, B.H. Hameed, Insights into the modeling of adsorption isotherm systems- a review, Chem. Eng. J., 156 (2010) 2–10.
  41. S.M. Baghbanian, N. Rezaei, H. Tashakkorian, Nanozeolite clinoptilolite as a highly efficient heterogeneous catalyst for the synthesis of various 2-amino-4H-chromene derivatives in aqueous media, Green Chem., 15 (2013) 3446–3458.
  42. J. Faber, T. Fawcett. The powder diffraction file: present and future, Acta Crystallogr., Sect. B, 58 (2002) 325 -332. Available at: http://www.fiz-informationsdienste.de/en/DB/icsd (Accessed April 2004).
  43. A.A. Amooey, A.I. Amouei, H. Tashakkorian, S.N. Mohseni, Performance of clinoptilolite zeolite in removal of dexamethasone from aqueous solutions, J. Mazandaran Univ. Med. Sci., 25 (2016) 128–137.
  44. A. Khalfaouei, A. Meniai, Application of chemically modified orange peels for removal of copper(II) from aqueous solutions, Theor. Found. Chem. Eng., 46 (2012) 732–739.
  45. M. Jalali, F. Aboulghazi, Sunflower stalk, an agricultural waste, as an adsorbent for the removal of lead and cadmium from aqueous solutions, J. Mater. Cycles Waste Manage., 15 (2013) 548–555.
  46. M. Bhaumik, T. Leswifi, A. Maity, V. Srinivasu, M. Onyango, Removal of fluoride from aqueous solution by polypyrrole/ Fe3O4 magnetic nanocomposite, J. Hazard. Mater., 186 (2011) 150–159.
  47. A. Lian, L. Xuegang, L. Xiaoyan, Z. Sizhao, Biosorption behaviors of uranium (VI) from aqueous solution by sunflower straw and insights of binding mechanism, J. Radioanal. Nucl. Chem., 298 (2013) 1823–1834.
  48. V. Garg, R. Gupta, R. Kumar, R.K. Gupta, Adsorption of chromium from aqueous solution on treated sawdust, Bioresour. Technol., 92 (2004) 79–81.
  49. H. Benaissa, M.A. Elouchdi, Removal of copper ions from aqueous solutions by dried sunflower leaves, Chem. Eng. Process., 46 (2007) 614–622.
  50. S. Ayoob, A.K. Gupta, Insights into isotherm making in the sorptive removal of fluoride from drinking water, J. Hazard. Mater., 152 (2008) 976–985.