References

  1. A.R. Esfahani, A.F. Firouzi, G. Sayyad, A. Kiasat, L. Alidokht, A.R. Khataee, Pb(II) removal from aqueous solution by polyacrylic acid stabilized zero-valent iron nanoparticles: process optimization using response surface methodology, Res. Chem. Intermed., 40 (2014) 431–445.
  2. A. Esfahani, S. Hojati, A. Azimi, L. Alidokht, A. Khataee, M. Farzadian, Reductive removal of hexavalent chromium from aqueous solution using sepiolite-stabilized zero-valent iron nanoparticles: process optimization and kinetic studies, Korean J. Chem. Eng., 31 (2014) 630–638.
  3. A.A. Babaei, M. Bahrami, A. Farrokhian Firouzi, A. Ramazanpour Esfahani, L. Alidokht, Adsorption of cadmium onto modified nanosized magnetite: kinetic modeling, isotherm studies, and process optimization, Desal. Wat. Treat., 56 (2015) 3380–3392.
  4. W.S. Tan, A.S.Y. Ting, Alginate-immobilized bentonite clay: adsorption efficacy and reusability for Cu(II) removal from aqueous solution, Bioresour. Technol., 160 (2014) 115–118.
  5. A. Farrokhian Firouzi, A.A. Babaei, S. Hosseini, F. Heidarizadeh, Adsorption of copper(II) by modified magnetite nanoparticles: adsorption efficacy, equilibrium, kinetic and reusability, Fresenius Environ. Bull., 24 (2015) 2815–2823.
  6. N.-B. Chang, C. Houmann, K.-S. Lin, M. Wanielista, Fate and transport with material response characterization of green sorption media for copper removal via adsorption process, Chemosphere, 144 (2016) 1280–1289.
  7. Z. Kong, X. Li, J. Tian, J. Yang, S. Sun, Comparative study on the adsorption capacity of raw and modified litchi pericarp for removing Cu(II) from solutions, J. Environ. Manage., 134 (2014) 109–116.
  8. Y. Hannachi, A. Rezgui, T. Boubaker, Biosorption potential of the Mediterranean plant (Posidonia oceanica) for the removal of Cu2+ ions from aqueous media: equilibrium, kinetic, thermodynamic and mechanism analysis, Korean J. Chem. Eng., 31 (2014) 1211–1218.
  9. L.M. Fisher-Power, T. Cheng, Z.S. Rastghalam, Cu and Zn adsorption to a heterogeneous natural sediment: influence of leached cations and natural organic matter, Chemosphere, 144 (2016) 1973–1979.
  10. D. Gusain, V. Srivastava, Y.C. Sharma, Kinetic and thermodynamic studies on the removal of Cu(II) ions from aqueous solutions by adsorption on modified sand, J. Ind. Eng. Chem., 20 (2014) 841–847.
  11. W.-S. Shin, K. Kang, Y.-K. Kim, Adsorption characteristics of multi-metal ions by red mud, zeolite, limestone, and oyster shell, Environ. Eng. Res., 19 (2014) 15–22.
  12. C.-G. Lee, J.-W. Jeon, M.-J. Hwang, K.-H. Ahn, C. Park, J.-W. Choi, S.-H. Lee, Lead and copper removal from aqueous solutions using carbon foam derived from phenol resin, Chemosphere, 130 (2015) 59–65.
  13. X. Liang, Z. He, G. Wei, P. Liu, Y. Zhong, W. Tan, P. Du, J. Zhu, H. He, J. Zhang, The distinct effects of Mn substitution on the reactivity of magnetite in heterogeneous Fenton reaction and Pb(II) adsorption, J. Colloid Interface Sci., 426 (2014) 181–189.
  14. E. Gutiérrez-Segura, M. Solache-Ríos, A. Colín-Cruz, C. Fall, Comparison of cadmium adsorption by inorganic adsorbents in column systems, Water Air Soil Pollut., 225 (2014) 1–13.
  15. P. Xu, G.M. Zeng, D.L. Huang, C.L. Feng, S. Hu, M.H. Zhao, C. Lai, Z. Wei, C. Huang, G.X. Xie, Z.F. Liu, Use of iron oxide nanomaterials in wastewater treatment: a review, Sci. Total Environ., 424 (2012) 1–10.
  16. E. Skwarek, W. Janusz, D. Sternik, Adsorption of citrate ions on hydroxyapatite synthetized by various methods, J. Radioanal. Nucl. Chem., 299 (2014) 2027–2036.
  17. A. Salem, E. Velayi, Application of hydroxyapatite and cement kiln dust mixture in adsorption of lead ions from aqueous solution, J. Ind. Eng. Chem., 18 (2012) 1216–1222.
  18. A.A. Babaei, Z. Baboli, N. Jaafarzadeh, G. Goudarzi, M. Bahrami, M. Ahmadi, Synthesis, performance, and nonlinear modeling of modified nano-sized magnetite for removal of Cr(VI) from aqueous solutions, Desal. Wat. Treat., 53 (2015) 768–777.
  19. A.A. Babaei, M. Ahmadi, G. Goudarzi, N. Jaafarzadeh, Z. Baboli, Adsorption of chromium(VI) from saline wastewater using spent tea-supported magnetite nanoparticle, Desal. Wat. Treat., 57 (2016) 12244–12256.
  20. X. Hongqin, W. Duilin, J. Zhe, L. Xiaowei, Z. Shouwei, L. Yan, C. Cheng, Kinetic and thermodynamic sorption study of radiocobalt by magnetic hydroxyapatite nanoparticles, J. Radioanal. Nucl. Chem., 292 (2012) 637–647.
  21. Y. Feng, J.-L. Gong, G.-M. Zeng, Q.-Y. Niu, H.-Y. Zhang, C.-G. Niu, J.-H. Deng, M. Yan, Adsorption of Cd(II) and Zn(II) from aqueous solutions using magnetic hydroxyapatite nanoparticles as adsorbents, Chem. Eng. J., 162 (2010) 487–494.
  22. S. Zakhama, H. Dhaouadi, F. M’Henni, Nonlinear modelisation of heavy metal removal from aqueous solution using Ulva lactuca algae, Bioresour. Technol., 102 (2011) 786–796.
  23. S. Rangabhashiyam, N. Anu, M.S. Giri Nandagopal, N. Selvaraju, Relevance of isotherm models in biosorption of pollutants by agricultural byproducts, J. Environ. Chem. Eng., 2 (2014) 398–414.
  24. Z.-p. Yang, X.-y. Gong, C.-j. Zhang, Recyclable Fe3O4/hydroxyapatite composite nanoparticles for photocatalytic applications, Chem. Eng. J., 165 (2010) 117–121.
  25. S. Meski, S. Ziani, H. Khireddine, S. Boudboub, S. Zaidi, Factorial design analysis for sorption of zinc on hydroxyapatite, J. Hazard. Mater., 186 (2011) 1007–1017.
  26. Y. Liu, M. Chen, H. Yongmei, Study on the adsorption of Cu(II) by EDTA functionalized Fe3O4 magnetic nano-particles, Chem. Eng. J., 218 (2012) 46–54.
  27. X.S. Wang, L. Zhu, H.J. Lu, Surface chemical properties and adsorption of Cu (II) on nanoscale magnetite in aqueous solutions, Desalination, 276 (2011) 154–160.
  28. R. Zhu, R. Yu, J. Yao, D. Mao, C. Xing, D. Wang, Removal of Cd2+ from aqueous solutions by hydroxyapatite, Catal. Today, 139 (2008) 94–99.
  29. X. Xin, Q. Wei, J. Yang, L. Yan, R. Feng, G. Chen, B. Du, H. Li, Highly efficient removal of heavy metal ions by aminefunctionalized mesoporous Fe3O4 nanoparticles, Chem. Eng. J., 184 (2012) 132–140.
  30. C. Yuan, C.-H. Hung, H.-W. Li, W.-H. Chang, Photodegradation of ibuprofen by TiO2 co-doping with urea and functionalized CNT irradiated with visible light – effect of doping content and pH, Chemosphere, 155 (2016) 471–478.
  31. F. Miyaji, Y. Kono, Y. Suyama, Formation and structure of zinc-substituted calcium hydroxyapatite, Mater. Res. Bull., 40 (2005) 209–220.
  32. M. Rafiee, M. Jahangiri-rad, Adsorption of reactive blue 19 from aqueous solution by carbon nano tubes: equilibrium, thermodynamics and kinetic studies, Res. J. Environ. Sci., 8 (2014) 205–214.
  33. L.D.T. Prola, E. Acayanka, E.C. Lima, C.S. Umpierres, J.C.P. Vaghetti, W.O. Santos, S. Laminsi, P.T. Djifon, Comparison of Jatropha curcas shells in natural form and treated by nonthermal plasma as biosorbents for removal of Reactive Red 120 textile dye from aqueous solution, Ind. Crops Prod., 46 (2013) 328–340.
  34. M.R. Lasheen, N.S. Ammar, H.S. Ibrahim, Adsorption/desorption of Cd(II), Cu(II) and Pb(II) using chemically modified orange peel: equilibrium and kinetic studies, Solid State Sci., 14 (2012) 202–210.
  35. Q. Liu, B. Yang, L. Zhang, R. Huang, Simultaneous adsorption of phenol and Cu2+ from aqueous solution by activated carbon/ chitosan composite, Korean J. Chem. Eng., 31 (2014) 1608–1615.
  36. D.-W. Cho, B.-H. Jeon, C.-M. Chon, Y. Kim, F.W. Schwartz, E.-S. Lee, H. Song, A novel chitosan/clay/magnetite composite for adsorption of Cu(II) and As(V), Chem. Eng. J., 200–202 (2012) 654–662.
  37. M. Rajiv Gandhi, G.N. Kousalya, S. Meenakshi, Removal of copper(II) using chitin/chitosan nano-hydroxyapatite composite, Int. J. Biol. Macromol., 48 (2011) 119–124.
  38. H. Karami, Heavy metal removal from water by magnetite nanorods, Chem. Eng. J., 219 (2013) 209–216.
  39. S.T. Ramesh, N. Rameshbabu, R. Gandhimathi, P.V. Nidheesh, M. Srikanth Kumar, Kinetics and equilibrium studies for the removal of heavy metals in both single and binary systems using hydroxyapatite, Appl. Water Sci., 2 (2012) 187–197.
  40. S. Azizian, M. Bagheri, Enhanced adsorption of Cu2+ from aqueous solution by Ag doped nano-structured ZnO, J. Mol. Liq., 196 (2014) 198–203.
  41. L. Hadjittofi, M. Prodromou, I. Pashalidis, Activated biochar derived from cactus fibres – preparation, characterization and application on Cu(II) removal from aqueous solutions, Bioresour. Technol., 159 (2014) 460–464.
  42. S. Jiang, L. Huang, T.A.H. Nguyen, Y.S. Ok, V. Rudolph, H. Yang, D. Zhang, Copper and zinc adsorption by softwood and hardwood biochars under elevated sulphate-induced salinity and acidic pH conditions, Chemosphere, 142 (2016) 64–71.
  43. Z. Zhang, H. Liu, L. Wu, H. Lan, J. Qu, Preparation of amino-Fe(III) functionalized mesoporous silica for synergistic adsorption of tetracycline and copper, Chemosphere, 138 (2015) 625–632.
  44. A. El Nemr, Potential of pomegranate husk carbon for Cr(VI) removal from wastewater: kinetic and isotherm studies, J. Hazard. Mater., 161 (2009) 132–141.
  45. L. Dong, Z. Zhu, Y. Qiu, J. Zhao, Removal of lead from aqueous solution by hydroxyapatite/magnetite composite adsorbent, Chem. Eng. J., 165 (2010) 827–834.
  46. Y.-J. Wang, J.-H. Chen, Y.-X. Cui, S.-Q. Wang, D.-M. Zhou, Effects of low-molecular-weight organic acids on Cu(II) adsorption onto hydroxyapatite nanoparticles, J. Hazard. Mater., 162 (2009) 1135–1140.