References

  1. R. Bushra, M. Naushad, R. Adnan, Z.A. ALOthman, M. Rafatullah, Polyaniline supported nanocomposite cation exchanger: synthesis, characterization and applications for the efficient removal of Pb2+ ion from aqueous medium, J. Ind. Eng. Chem., 21 (2015) 1112–1118.
  2. T.A. Khan, E.A. Khan, Removal of basic dyes from aqueous solution by adsorption onto binary iron-manganese oxide coated kaolinite: non-linear isotherm and kinetics modeling, Appl. Clay Sci., 107 (2015) 70–77.
  3. L.B.L. Lim, N. Priyantha, T. Zehra, C.W. Then, C.M. Chan, Adsorption of crystal violet dye from aqueous solution onto chemically treated Artocarpus odoratissimus skin: equilibrium, thermodynamics, and kinetics studies, Desal. Wat. Treat., 57 (2016) 10246–10260.
  4. M. Naushad, T. Ahamad, G. Sharma, A.H. Al-Muhtaseb, A.B. Albadarin, M.M. Alam, Z.A. ALOthman, S.M. Alshehri, A.A. Ghfar, Synthesis and characterization of a new starch/SnO2 nanocomposite for efficient adsorption of toxic Hg2+ metal ion, Chem. Eng. J., 300 (2016) 306–316.
  5. O. Sulaiman, N.S. Ghani, M. Rafatullah, R. Hashim, Removal of zinc (II) ions from aqueous solutions using surfactant modified bamboo sawdust, Sep. Sci. Technol., 46 (2011) 2275–2282.
  6. T.A. Khan, S. Sharma, E.A. Khan, A.A. Mukhlif, Removal of congo red and basic violet 1 by chir pine (Pinus roxburghii) sawdust, a saw mill waste: batch and column studies, Toxicol. Environ. Chem., 96 (2014) 555–568.
  7. M. Naushad, M.R. Khan, Z.A. ALOthman, I. AlSohaimi, F. Rodriguez-Reinoso, T.M. Turki, R. Ali, Removal of BrO3 from drinking water samples using newly developed agricultural waste-based activated carbon and its determination by ultra-performance liquid chromatography-mass spectrometry, Environ. Sci. Pollut. Res., 22 (2015) 15853–15865.
  8. K.Y. Foo, B.H. Hameed, Mesoporous activated carbon from wood sawdust by K2CO3 activation using microwave heating, Bioresour. Technol., 111 (2012) 425–432.
  9. L. Ding, B. Zou, W. Gao, Q. Liu, Z. Wang, Y. Guo, X. Wang, Y. Liu, Adsorption of Rhodamine-B from aqueous solution using treated rice husk-based activated carbon, Colloids Surf., A, 446 (2014) 1–7.
  10. Z.A. ALOthman, M. Naushad, R. Ali, Kinetic, equilibrium isotherm and thermodynamic studies of Cr(VI) adsorption onto low-cost adsorbent developed from peanut shell activated with phosphoric acid, Environ. Sci. Pollut. Res., 20 (2013) 3351–3365.
  11. E. Hettiarachchi, R. Perera, A.D.L.C. Perera, N. Kottegoda, Activated coconut coir for removal of sodium and magnesium ions from saline water, Desal. Wat. Treat., 57 (2016) 22341–22352.
  12. D. Pathania, G. Sharma, A. Kumar, M. Naushad, S. Kalia, A. Sharma, Z.A. ALOthman, Combined sorptional–photocatalytic remediation of dyes by polyaniline Zr(IV) selenotungstophosphate nanocomposite, Toxicol. Environ. Chem., 97 (2015) 526–537.
  13. A. Kumar, G. Sharma, M. Naushad, P. Singh, S. Kalia, Polyacrylamide/Ni0.02Zn0.98O nanocomposite with high solar light photocatalytic activity and efficient adsorption capacity for toxic dye removal, Ind. Eng. Chem. Res., 53 (2014) 15549–15560.
  14. H.I. Chieng, L.B.L. Lim, N. Priyantha, Sorption characteristics of peat from Brunei Darussalam for the removal of rhodamine B dye from aqueous solution: adsorption isotherms, thermodynamics, kinetics and regeneration studies, Desal. Wat. Treat., 55 (2015) 664–677.
  15. M.A. Hossain, M.S. Alam, Adsorption kinetics of Rhodamine-B on used black tea leaves, Iran. J. Environ. Health Sci. Eng., 9 (2012) 1–7.
  16. S. Arivoli, M. Henkuzhali, Kinetic, mechanistic, thermodynamic and equilibrium studies on the adsorption of Rhodamine B by acid activated low cost carbon, J. Chem., 5 (2008) 187–200.
  17. M. Hema, S. Arivoli, Rhodamine B adsorption by activated carbon: kinetic and equilibrium studies, Indian J. Chem. Technol., 16 (2009) 38–45.
  18. L. Li, S. Liu, T. Zhu, Application of activated carbon derived from scrap tires for adsorption of Rhodamine B, J. Environ. Sci., 22 (2010) 1273–1280.
  19. M. Mohammadi, A.J. Hassani, A.R. Mohamed, G.D. Najafpour, Removal of Rhodamine B from aqueous solution using palm shell-based activated carbon: adsorption and kinetic studies, J. Chem. Eng. Data., 55 (2010) 5777–5785.
  20. F.Y. Wang, H. Wang, J.W. Ma, Adsorption of cadmium (II) ions from aqueous solution by a new low-cost adsorbent—Bamboo charcoal, J. Hazard. Mater., 177 (2010), 300–306.
  21. Q.S. Liu, T. Zheng, N. Li, N.P. Wang, G. Abulikemu, Modification of bamboo-based activated carbon using microwave radiation and its effects on the adsorption of methylene blue, Appl. Surf. Sci., 256 (2010) 3309–3315.
  22. B.H. Hameed, A.T. Din, A.L. Ahmad, Adsorption of methylene blue onto bamboo-based activated carbon: kinetics and equilibrium studies, J. Hazard. Mater., 141 (2007) 819–825.
  23. F.C. Yang, K.H. Wu, W.P. Lin, M.K. Hu, T.S. Sheu, D.N. Horng, Preparation and antibacterial effect of bamboo charcoal/Ag on Staphylococcus aureus and Pseudomonas aeruginosa, J. Chin. Chem. Soc., 56 (2009) 327–334.
  24. T.M. Disanayake, N. Kottegoda, C. Perera, Evaluation of ion adsorption capacities of Murunkan clay and coir as cost effective materials for desalination of water, Int. J. Earth Sci. Eng., 6 (2013) 788–790.
  25. E. Hettiarachchi, N. Kottegoda, A.D.L.C. Perera, Activated coir for removal of water hardness, Desal. Wat. Treat., (2017) 1–8. doi: 10.5004/dwt.2017.0339.
  26. A. Paragodaarachchi, A.D.L.C. Perera, N. Kottegoda, Flouride Adsorption on Activated Coconut Coir, Proc. Research and Development Study Symposium, World Water Day, Colombo, Sri Lanka, 2016.
  27. Q.S. Liu, T. Zheng, P. Wang, L. Guo, Preparation and characterization of activated carbon from bamboo by microwave-induced phosphoric acid activation, Ind. Crops Prod., 31 (2010) 233–238.
  28. H. Boehm, Some aspects of the surface chemistry of carbon blacks and other carbons, Carbon, 32 (1994) 759–769.
  29. L.S. Chan, W.H. Cheung, G. McKay, Adsorption of acid dyes by bamboo derived activated carbon, Desalination, 218 (2008) 304–312.
  30. E. Cristiano, Y.J. Hu, M. Siegfried, D. Kaplan, H. Nitsche, A comparison of point of zero charge measurement methodology, Clays Clay Miner., 59 (2011) 107–115.
  31. H. Boehm, Surface oxides on carbon and their analysis: a critical assessment, Carbon, 40 (2002) 145–149.
  32. A. Puziy, O. Poddubnaya, A. Martınez-Alonso, F. Suárez-Garcıa, J. Tascón, Synthetic carbons activated with phosphoric acid: I. Surface chemistry and ion binding properties, Carbon, 40 (2002) 1493–1505.
  33. Y. Wang, X. Wang, M. Liu, X. Wang, Z. Wu, L. Yang, S. Xia, J. Zhao, Cr(VI) removal from water using cobalt-coated bamboo charcoal prepared with microwave heating, Ind. Crops Prod., 39 (2012) 81–88.
  34. C.H. Giles, T. MacEwan, S. Nakhwa, D. Smith, 786. Studies in adsorption. Part XI. A system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids, J. Chem. Soc. (1960) 3973–3993. doi:10.1039/JR9600003973.
  35. E. Lorenc-Grabowska, P. Rutkowski, High basicity adsorbents from solid residue of cellulose and synthetic polymer co-pyrolysis for phenol removal: kinetics and mechanism, Appl. Surf. Sci., 316 (2014) 435–442.
  36. R. Otero, D. Esquivel, M.A. Ulibarri, F.J. Romero-Salguero, P. Van Der Voort, J.M. Fernández, Mesoporous phenolic resin and mesoporous carbon for the removal of S-Metolachlor and Bentazon herbicides, Chem. Eng. J., 251 (2014) 92–101.
  37. J.M.L. Martínez, M.F.L. Denis, L.L. Piehl, E.R. de Celis, G.Y. Buldain, V.C. Dall’ Orto, Studies on the activation of hydrogen peroxide for color removal in the presence of a new Cu(II)-polyampholyte heterogeneous catalyst, Appl. Catal., B, 82 (2008) 273–283.
  38. I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc., 40 (1918) 1361–1403.
  39. L. Wang, J. Zhang, R. Zhao, C. Li, Y. Li, C. Zhang, Adsorption of basic dyes on activated carbon prepared from Polygonum orientale Linn: equilibrium, kinetic and thermodynamic studies, Desalination, 254 (2010) 68–74.
  40. M.R.R. Kooh, M.K. Dahri, L.B.L. Lim, Jackfruit seed as a sustainable adsorbent for the removal of Rhodamine B dye, J. Environ. Biotechnol. Res., 4 (2016) 7–16.
  41. T.A. Khan, S. Dahiya, I. Ali, Use of kaolinite as adsorbent: equilibrium, dynamics and thermodynamic studies on the adsorption of Rhodamine B from aqueous solution, Appl. Clay Sci., 69 (2012) 58–66.
  42. M.R.R. Kooh, L.B.L. Lim, L.H. Lim, M.K. Dahri, Separation of toxic rhodamine B from aqueous solution using an efficient low-cost material, Azolla pinnata, by adsorption method, Environ. Monit. Assess., 188 (2016) 1–15.
  43. M.R.R. Kooh, M.K. Dahri, L.B.L. Lim, The removal of rhodamine B dye from aqueous solution using Casuarina equisetifolia needles as adsorbent, Cogent Environ. Sci., 2 (2016) 1140553.
    doi: 10.1080/23311843.2016.1140553.
  44. K. Foo, B. Hameed, Insights into the modeling of adsorption isotherm systems, Chem. Eng. J., 156 (2010) 2–10.
  45. N.D. Hutson, R.T. Yang, Theoretical basis for the Dubinin-Radushkevitch (D–R) adsorption isotherm equation, Adsorption, 3 (1997) 189–195.
  46. M. Ungarish, C. Aharoni, Kinetics of chemisorption. Deducing kinetic laws from experimental data, J. Chem. Soc., Faraday Trans. 1, 77 (1981) 975–985.
  47. S. Azizian, Kinetic models of sorption: a theoretical analysis, J. Colloid Interface Sci., 276 (2004) 47–52.
  48. H.M. Gad, A.A. El-Sayed, Activated carbon from agricultural by-products for the removal of Rhodamine-B from aqueous solution, J. Hazard. Mater., 168 (2009) 1070–1081.
  49. Y. Ho, J. Ng, G. McKay, Kinetics of pollutant sorption by biosorbents: review, Sep. Purif. Methods, 29 (2000) 189–232.
  50. Y. Ho, G. McKay, A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents, Process Saf. Environ. Prot., 76 (1998) 332–340.