References

  1. J.C. Colmenares, R. Luque, J.M. Campelo, F. Colmenares, Z. Karpiński, A.A. Romero, Nanostructured photocatalysts and their applications in the photocatalytic transformation of lignocellulosic biomass:
    an overview, Materials, 2 (2009) 2228–2258.
  2. N. Serpone, Relative photonic efficiencies and quantum yields in heterogeneous photocatalysis, J. Photochem. Photobiol., A, 104 (1997) 1–12.
  3. Y. Wang, Y. Li, W. Zhang, Q. Wang, D. Wang, Photocatalytic degradation and reactor modeling of 17α-ethynylestradiol employing titanium dioxide-incorporated foam concrete, Environ. Sci. Pollut. Res., 22 (2015) 3508–3517.
  4. G. Li Puma, V. Puddu, H.K. Tsang, A. Gora, B. Toepfer, Photocatalytic oxidation of multicomponent mixtures of estrogens (estrone (E1), 17β-estradiol (E2), 17α-ethynylestradiol (EE2) and estriol (E3)) under UVA and UVC radiation: photon absorption, quantum yields and rate constants independent of photon absorption, Appl. Catal., B, 99 (2010) 388–397.
  5. L. Liu, Y. Li, H. Zhang, W. Zhang, Photocatalytic degradation of 17α-ethinylestradiol using ZnO self-assembly microspheres, Fresen. Environ. Bull., 21 (2012) 2232–2237.
  6. R. Fagan, D.E. McCormack, D.D. Dionysiou, S.C. Pillai, A review of solar and visible light active TiO2 photocatalysis for treating bacteria, cyanotoxins and contaminants of emerging concern, Mater. Sci. Semicond. Process., 42 (2016) 2–14.
  7. H.S. Kushwaha, G. Parmesh, R. Vaish, K.B.R. Varma, TiO2 microcrystallized glass plate mediated photocatalytic degradation of estrogenic pollutant in water, J. Non-Cryst. Solids, 408 (2015) 13–17.
  8. K. Mao, Y. Li, H. Zhang, W. Zhang, W. Yan, Photocatalytic degradation of 17α-ethinylestradiol and inactivation of Escherichia coli using Ag-modified TiO2 nanotube arrays, Clean, 41 (2013) 455–462.
  9. I. Brnardić, M. Huskić, P. Umek, A. Fina, T. Holjevac Grgurić, Synthesis of silane functionalized sodium titanate nanotubes and their influence on thermal and mechanical properties of epoxy nanocomposite, Phys. Status Solidi A, 210 (2013) 2284–2291.
  10. J. Ungelenk, C. Feldmann, Synthesis of faceted β-SnWO4 microcrystals and enhanced visible-light photocatalytic properties, Chem. Commun., 48 (2012) 7838–7840.
  11. J. Ungelenk, C. Feldmann, Adjustable kinetics in heterogeneous photocatalysis demonstrating the relevance of electrostatic interactions, Appl. Catal., B, 127 (2012) 11–17.
  12. V. Bem, M.C. Neves, M.R. Nunes, A.J. Silvestre, O.C. Monteiro, Influence of the sodium/proton replacement on the structural, morphological and photocatalytic properties of titanate nanotubes, J. Photochem. Photobiol., A, 232 (2012) 50–56.
  13. R.R. Chowdhury, P.A. Charpentier, M.B. Ray, Photodegradation of 17β-estradiol in aquatic solution under solar irradiation: kinetics and influencing water parameters, J. Photochem. Photobiol., A, 219 (2011) 67–75.
  14. V. Maroga Mboula, V. Héquet, Y. Andrès, L.M. Pastrana-Martínez, J. Miguel Doña-Rodríguez, A.M.T. Silva, P. Falaras, Photocatalytic degradation of endocrine disruptor compounds under simulated solar light, Water Res., 47 (2013) 3997–4005.
  15. V. Maroga Mboula, V. Héquet, Y. Andrès, Y. Gru, R. Colin, J.M. Doña-Rodríguez, L.M. Pastrana-Martínez, A.M.T. Silva, M. Leleu, A.J. Tindall, S. Mateos, P. Falaras, Photocatalytic degradation of estradiol under simulated solar light and assessment of estrogenic activity, Appl. Catal., B, 162 (2015) 437–444.
  16. E.J. Routledge, D. Sheahan, C. Desbrow, G.C. Brighty, M. Waldock, J.P. Sumpter, Identification of estrogenic chemicals in STW effluent. 2. In vivo responses in trout and roach, Environ. Sci. Technol., 32 (1998) 1559–1565.
  17. P. Umek, R. Cerc Korošec, B. Jancar, R. Dominko, D. Arcon, The influence of the reaction temperature on the morphology of sodium titanate 1D nanostructures and their thermal stability, J. Nanosci. Nanotechnol., 7 (2007) 3502–3508.
  18. Y. Yoon, P. Westerhoff, S.A. Snyder, M. Esparza, HPLC-fluorescence detection and adsorption of bisphenol A, 17b-estradiol, and 17a-ethynyl estradiol on powdered activated carbon, Water Res., 37 (2003) 3530–3537.
  19. I. Brnardić, M. Huskić, P. Umek, T. Holjevac Grgurić, Sol–gel functionalization of sodium TiO2 nanotubes and nanoribbons with aminosilane molecules, Ceram. Int., 39 (2013) 9459–9464.
  20. P. Umek, P. Cevc, A. Jesih, A. Gloter, C.P. Ewels, D. Arčon, Impact of structure and morphology on gas adsorption of titanate-based nanotubes and nanoribbons, Chem. Mater., 17 (2005) 5945–5950.
  21. A. Welte, C. Waldauf, C. Brabec, P. Wellmann, Application of optical for the investigation of electronic and structural properties of sol-gel processed TiO2 films, Thin Solid Films, 516 (2008) 7256–7259.
  22. D. Monllor-Satoca, R. Gomez, M. González-Hidalgo, P. Salvador, The “Direct–Indirect” model: an alternative kinetic approach in heterogeneous photocatalysis based on the degree of interaction of dissolved pollutant species with the semiconductor surface, Catal. Today, 129 (2007) 247–255.
  23. R. Kaplan, B. Erjavec, G. Dražić, J. Grdadolnik, A. Pintar, Simple synthesis of anatase/rutile/brookite TiO2 nanocomposite with superior mineralization potential for photocatalytic degradation of water pollutants, Appl. Catal., B, 181 (2016) 465–474.
  24. D.O. Scanlon, C.W. Dunnill, J. Buckeridge, S.A. Shevlin, A.J. Logsdail, S.M. Woodley, C.R.A. Catlow, M.J. Powell, R.G. Palgrave, I.P. Parkin, G.W. Watson, T.W. Keal, P. Sherwood, A. Walsh, A.A. Sokol, Band alignment of rutile and anatase TiO2, Nature Materials, 12 (2013) 798–801.
  25. R. Lopez, R. Gomez, Band-gap energy estimation from diffuse reflectance measurements on sol–gel and commercial TiO2: a comparative study, J. Sol-Gel Sci. Technol., 61 (2012) 1–7.
  26. R.R. Chowdhury, P. Charpentier, M.B. Ray, Photodegradation of estrone in solar irradiation, Ind. Eng. Chem. Res., 49 (2010) 6923–6930.
  27. Y. Lin, Z. Peng, X. Zhang, Ozonation of estrone, estradiol, diethylstilbestrol in waters, Desalination, 249 (2009) 235–240.
  28. Y. Ohko, K.I. Iuchi, C. Niwa, T. Tatsuma, T. Nakashima, T. Iguchi, Y. Kubota, A. Fujishima, 17β-Estradiol degradation by TiO2 photocatalysis as a means of reducing estrogenic activity, Environ. Sci. Technol., 36 (2002) 4175–4181.
  29. E.J. Rosenfeldt, P.J. Chen, S. Kullman, K.G. Linden, Destruction of estrogenic activity in water using UV advanced oxidation, Sci. Total Environ., 377 (2007) 105–113.
  30. D. Bahnemann, R. Dillert, J. Dzengel, R. Goslich, G. Sagave, H.-W. Schumacher, Field studies of solar water detoxification using non light concentrating reactors, J. Adv. Oxid. Technol., 4 (1999) 11–19.
  31. R. Kaplan, B. Erjavec, A. Pintar, Enhanced photocatalytic activity of single-phase, nanocomposite and physically mixed TiO2 polymorphs, Appl. Catal., A, 489 (2015) 51–60.
  32. J. Krýsa, G. Waldner, H. Měštánková, J. Jirkovsky, G. Grabner, Photocatalytic degradation of model organic pollutants on an immobilized particulate TiO2 layer: roles of adsorption process and mechanistic complexity, Appl. Catal., B, 64 (2006) 290–301.