References

  1. C.M. Teh, A.R. Mohamed, Roles of titanium dioxide and iondoped titanium dioxide on photocatalytic degradation of organic pollutants (phenolic compounds and dyes) in aqueous solutions: a review,
    J. Alloys Compd., 509 (2011) 1648–1660.
  2. T. Robinson, G. McMullan, R. Marchant, P. Nigam, Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative, Bioresour. Technol., 77 (2001) 247–255.
  3. E. Forgacs, T. Cserhati, G. Oros, Removal of synthetic dyes from wastewaters: a review, Environ. Int., 30 (2004) 953–971.
  4. R. Marandi, M.E. Olya, B. Vahid, M. Khosravi, M. Hatami, Kinetic modeling of photocatalytic degradation of an azo dye using nano-TiO2/polyester, Environ. Eng. Sci., 29 (2012) 957–963.
  5. F. Han, V.S.R. Kambala, M. Srinivasan, D. Rajarathnam, R. Naidu, Tailored titanium dioxide photocatalysts for the degradation of organic dyes in wastewater treatment: a review, Appl. Catal., A, 359 (2009) 25–40.
  6. M. Umar, H. Abdul, Adsorption Technique for the Removal of Organic Pollutants from Water and Wastewater, Chapter 8, M.N. Rashed, Ed., Organic Pollutants - Monitoring, Risk and Treatment, InTech, Croatia, 2013, pp. 195–208.
  7. T.A. Gad-Allah, S. Kato, S. Satokawa, T. Kojima, Treatment of synthetic dyes wastewater utilizing a magnetically separable photocatalyst (TiO2/SiO2/Fe3O4): parametric and kinetic studies, Desalination, 244 (2009) 1–11.
  8. C.-C. Liu, Y.-H. Hsieh, P.-F. Lai, C.-H. Li, C.-L. Kao, Photodegradation treatment of azo dye wastewater by UV/TiO process, Dyes Pigm., 68 (2006) 191–195.
  9. J. Zhang, Y. Hu, X. Jiang, S. Chen, S. Meng, X. Fu, Design of a direct Z-scheme photocatalyst: preparation and characterization of Bi2O3/g-C3N4 with high visible light activity, J. Hazard. Mater., 280 (2014) 713–722.
  10. M. Kahouli, A. Barhoumi, A. Bouzid, A. Al-Hajry, S. Guermazi, Structural and optical properties of ZnO nanoparticles prepared by direct precipitation method: a review, Superlattices Microstruct., 85 (2015) 7–23.
  11. A.M. Motoc, I.A. Tudor, M. Petriceanu, V. Badilita, E.P. del Barrio, P. Jana, V. Fierro, A. Celzard, R.R. Piticescu, In-situ synthesis and attachment of colloidal ZnO nanoparticles inside porous carbon structures, Mater. Chem. Phys., 161 (2015) 219–227.
  12. M. Ahmadi, R. Younesi, M.J.-F. Guinel, Synthesis of tungsten oxide nanoparticles using a hydrothermal method at ambient pressure, J. Mater. Res., 29 (2014) 1424–1430.
  13. E.D. Sherly, J.J. Vijaya, Visible light induced photocatalytic degradation of 2,4-dichlorophenol on ZnO-NiO coupled metal oxides, Int. J. ChemTech Res., 7 (2015) 1369–1376.
  14. H. Zheng, J.Z. Ou, M.S. Strano, R.B. Kaner, A. Mitchell, K. Kalantar-zadeh, Nanostructured tungsten oxide – properties, synthesis, and applications, Adv. Funct. Mater., 21 (2011) 2175–2196.
  15. P. Huang, M.M. Kalyar, R.F. Webster, D. Cherns, M.N. Ashfold, Tungsten oxide nanorod growth by pulsed laser deposition: influence of substrate and process conditions, Nanoscale, 6 (2014) 13586–13597.
  16. R.F. Garcia-Sanchez, T. Ahmido, D. Casimir, S. Baliga, P. Misra, Thermal effects associated with the Raman spectroscopy of WO3 gas-sensor materials, J. Phys. Chem. A, 117 (2013) 13825–13831.
  17. J.M. Wang, X.W. Sun, Z. Jiao, Application of nanostructures in electrochromic materials and devices: recent progress, Materials, 3 (2010) 5029–5053.
  18. H. Zhang, J. Yang, D. Li, W. Guo, Q. Qin, L. Zhu, W. Zheng, Template-free facile preparation of monoclinic WO3 nanoplates and their high photocatalytic activities, Appl. Surf. Sci., 305 (2014) 274–280.
  19. D. Sánchez-Martínez, A. Martínez-de la Cruz, E. López-Cuéllar, Synthesis of WO3 nanoparticles by citric acid-assisted precipitation and evaluation of their photocatalytic properties, Mater. Res. Bull., 48 (2013) 691–697.
  20. R. Ianos, R. Istratie, C. Pacurariu, R. Lazau, Solution combustion synthesis of strontium aluminate, SrAl2O4, powders: single-fuel versus fuel-mixture approach, Phys. Chem. Chem. Phys., 18 (2016) 1150–1157.
  21. R.V. Mangalaraja, S. Ananthakumar, Microwave Assisted Combustion (MAC) Synthesis of Mixed Oxide Electro-Ceramic Nanopowders, M. Lacknerq, Ed., Combustion Synthesis: Novel Routes to Novel Materials, Bentham Science Publishers Ltd., Austria, 2010, pp. 156–174.
  22. A. Alves, C.P. Bergmann, F.A. Berutti, Novel Synthesis and Characterization of Nanostructured Materials, Springer, Berlin, Heidelberg, 2013, pp. 11–22.
  23. C. Wang, X. Li, C. Feng, Y. Sun, G. Lu, Nanosheets assembled hierarchical flower-like WO3 nanostructures: synthesis, characterization, and their gas sensing properties, Sens. Actuators, B, 210 (2015) 75–81.
  24. D. Rajamanickam, M. Shanthi, Solar light assisted photocatalytic mineralization of an azo dye, sunset yellow by using CAC/TiO2 composite catalyst, Indian J. Chem., Sect A, 54 (2015) 613–618.
  25. M. ANIK, Anodic behavior of tungsten in H3PO4-K2SO4-H2SO4/KOH solutions, Turk. J. Chem., 26 (2002) 915–924.
  26. I.K. Konstantinou, T.A. Albanis, TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review, Appl. Catal., B, 49 (2004) 1–14.
  27. P.V. Korake, A.N. Kadam, K.M. Garadkar, Photocatalytic activity of Eu3+-doped ZnO nanorods synthesized via microwave assisted technique, J. Rare Earths, 32 (2014) 306–313.
  28. B. Krishnakumar, B. Subash, M. Swaminathan, AgBr–ZnO – an efficient nano-photocatalyst for the mineralization of Acid Black 1 with UV light, Sep. Purif. Technol., 85 (2012) 35–44.
  29. N. Daneshvar, D. Salari, A.R. Khataee, Photocatalytic degradation of azo dye acid red 14 in water: investigation of the effect of operational parameters, J. Photochem. Photobiol., A, 157 (2003) 111–116.