References

  1. V. Broje, A.A. Keller, Improved mechanical oil spill recovery using an optimized geometry for the skimmer surface. Environ. Sci. Technol., 40 (2006) 7914–7918.
  2. E.B. Kujawinski, M.C.K. Soule, D.L. Valentine, A.K. Boysen, K. Longnecker, M.C. Redmond, Fate of dispersants associated with the deepwater horizon oil spill. Environ. Sci. Technol., 45 (2011) 1298–1306.
  3. H.A. Aziz, M.A. Zahed, M.H. Isa, L. Mohajeri, S. Mohajeri, Optimal conditions for bioremediation of oily seawater. Biores. Technol., 101 (2010) 9455–9460.
  4. H.M. Choi, R.M. Cloud, Natural sorbents in oil spill cleanup. Environ. Sci. Technol., 26 (1992) 772–776.
  5. M.O. Adebajo, R.L. Frost, J.T. Kloprogge, O. Carmody, S. Kokot, Porous materials for oil spill cleanup: a review of synthesis and absorbing properties. J. Porous. Mater., 10 (2003) 159–170.
  6. A. Bayat, S.F. Aghamiri, A. Moheb, G.R. Vakili-Nezhaad, Oil spill cleanup from sea water by sorbent materials. Chem. Eng. Technol., 28 (2005) 1525–1528.
  7. A.L. Ahmad, S. Sumathi, B.H. Hameed, Residual oil and suspended solid removal using natural adsorbents chitosan, bentonite and activated carbon: A comparative study. Chem. Eng. Technol., 08 (2005) 179–185.
  8. S. Suni, A.L. Kosunenc, M. Hautalad, A. Pasilae, M. Romantschuka, Use of a by-product of peat excavation, cotton grass fibre, as a sorbent for oil-spills. Mar. Pollut. Bull., 49 (2004) 916–921.
  9. Q.F. Wei, R.R. Mather, A.F. Fotheringham, R.D. Yang. Evaluation of nonwoven polypropylene oil sorbents in marine oilspill recovery. Mar. Pollut. Bull., (2003) 780–783.
  10. H. Li, L. Liu, F. Yang, Hydrophobic modification of polyurethane foam for oil spill cleanup. Mar. Pollut. Bull., 64 (2012) 1648–1653.
  11. M. Hemmatia, F. Rekabdara, A. Gheshlaghia, A. Salahib, T. Mohammadic, Effects of air sparging, cross flow velocity and pressure on permeation flux enhancement in industrial oily wastewater treatment using microfiltration. Desal. Water. Treat., 39 (2012) 33–40.
  12. Y. Zhao, J. Zhong, H. Li, N. Xu, J. Shi, Fouling and regeneration of ceramic microfiltration membranes in processing acid wastewater containing fine TiO2 particles, J. Membr. Sci., 208 (2002) 331–341.
  13. J. Cui, X. Zhang, H. Liu, S. Liu, K.L. Yeung, Preparation and application of zeolite/ceramic microfiltration membranes for treatment of oil contaminated water, J. Membr. Sci., 325 (2008) 420–426.
  14. M. Ebrahimi, D. Willershausen, K.Sh. Ashaghi, L. Engel, L. Placido, P. Mund, P. Bolduan, P. Czermak, Investigations on the use of different ceramic membranes for efficient oil-field produced water treatment. Desalination, 250 (2010) 991–996.
  15. F.L. Hua, Y.F. Tsang, Y.J. Wang, S.Y. Chan, H. Chua, S.N. Sin, Performance study of ceramic microfiltration membrane for oily wastewater treatment. Chem. Eng. J., 2007 (2007) 169–175.
  16. M. Ebrahimi, K.S. Ashaghi, L. Engel, D. Willershausen, P. Mund, P. Bolduan, P. Czermak, Characterization and application of different ceramic membranes for the oil-field produced water treatment. Desalination, 245 (2009) 533–540.
  17. J. Rafiee, M.A. Rafiee, Z.Z. Yu, N. Koratkar, Superhydrophobic to superhydrophilic wetting control in graphene films. Adv. Mater., 22 (2010) 2151–2154.
  18. H.Y. Sun, Z. Xu, C. Gao, Multifunctional, ultra-fly weight, synergistically assembled carbon aerogels, Adv. Mater., 25 (2013) 2554–2560.
  19. H. Bi, X. Xie, K. Yin, Yilong Zhou, S. Wan, L.B. He, F. Xu, F. Banhart, L.T. Sun, R.S. Ruoff, Spongy graphene as a highly efficient and recyclable sorbent for oils and organic solvents. Adv. Funct. Mater., (2012) 4421–4425.
  20. D.D. Nguyen, N.H. Tai, S.B. Lee, W.S. Kuo, Superhydrophobic and superoleophilic properties of graphene-based sponges fabricated using a facile dip coating method. Energ. Environ. Sci., 5 (2012) 7908–7912.
  21. S. H. Tabatabaei, P.J. Carreau, A. Ajji, Microporous membranes obtained from polypropylene blend films by stretching. J. Membr. Sci., 325 (2008) 772–782.
  22. J. Rafiee, M.A. Rafiee, Z.Z. Yu, N. Koratkar, Superhydrophobic to superhydrophilic wetting control in graphene films. Adv. Mater., 22 (2010) 2151–2154.
  23. X. Zhang, S.H. Wan, J.B. Pu, L.P. Wang, X.Q. Liu, Highly hydrophobic and adhesive performance of graphene films. J. Mater. Chem., 21 (2011) 12251–12258.
  24. Z. Niu, J. Chen, H.H. Hng, X. Chen, A leavening strategy to prepare reduced graphene oxide foams. Adv. Mater., 24 (2012) 4144–4150.
  25. L.R. Fisher, P.D. Lark, An experimental study of the wash burn equation for liquid flow in very fine capillaries. J. Colloid. Interface. Sci., 69 (1979) 486–492.
  26. S.T. Yang, Y.L. Chang, H.F. Wang, et al., Folding/aggregation of grapheme oxide and its application in Cu2+ removal, J. Colloid Interface Sci., 351 (2010) 122–127.
  27. V. Chandra, J. Park, Y. Chun, et al., Water-dispersible magnetite-reduced grapheme oxide composites for Arsenic removal. ACS Nano, 4 (2010) 3979–3986.