References

  1. S. Jamaly, N.N. Darwish, I. Ahmed, S.W. Hasan, A short review on reverse osmosis pretreatment technologies, Desalination, 354 (2014) 30–38. doi:10.1016/j.desal.2014.09.017.
  2. B.L. Morris, A.R. Lawrence, P.J.C. Chilton, B. Adams, R.C. Calow, B.A. Klinck, Groundwater and its susceptibility to degradation: a global assessment of the problem and options for management, 2003.
  3. N. Akther, A. Sodiq, A. Giwa, S. Daer, H.A. Arafat, S.W. Hasan, Recent advancements in forward osmosis desalination: A review, Chem. Eng. J., 281 (2015) 502–522. doi:10.1016/j. cej.2015.05.080.
  4. R.I. McDonald, K. Weber, J. Padowski, M. Flörke, C. Schneider, P.A. Green, Water on an urban planet: Urbanization and the reach of urban water infrastructure, Glob. Environ. Chang., 27 (2014) 96–105. doi:10.1016/j.gloenvcha.2014.04.022.
  5. A. Giwa, H. Fath, S.W. Hasan, Humidification–dehumidification desalination process driven by photovoltaic thermal energy recovery (PV-HDH) for small-scale sustainable water and power production, Desalination, 377 (2016) 163–171. doi:10.1016/j.desal.2015.09.018.
  6. A. Giwa, N. Akther, A. Al Housani, S. Haris, S.W. Hasan, Recent advances in humidification dehumidification (HDH) desalination processes: Improved designs and productivity, Renew. Sustain. Energy Rev., 57 (2016) 929–944. doi:10.1016/j.rser.2015.12.108.
  7. S. Daer, J. Kharraz, A. Giwa, S.W. Hasan, Recent applications of nanomaterials in water desalination: A critical review and future opportunities, Desalination, 367 (2015) 37–48. doi:10.1016/j.desal.2015.03.030.
  8. S. Jamaly, A. Giwa, S.W. Hasan, Recent improvements in oily wastewater treatment: Progress, challenges, and future opportunities, J. Environ. Sci., 37 (2015) 1–16. doi:10.1016/j.jes.2015.04.011.
  9. A.C. van Haandel, J.G.M. van der Lubbe, Handbook of Biological Wastewater Treatment: Design and Optimisation of Activated Sludge Systems, 2012. http://books.google.ae/books/about/Handbook_of_Biological_Wastewater_Treatm. html?id=RBLA8y6GGAMC&pgis=1 (accessed January 8, 2015).
  10. B. Petersen, K. Gernaey, M. Henze, P.A. Vanrolleghem, Calibration of activated sludge models: A critical review of experimental designs, in: S.N. Agathos, W. Reineke (Eds.), Biotechnol. Environ. Wastewater Treat. Model. Waste Gas Handl., Kluwer Academic Publishers, Dordrecht, 2003: pp. 101–186. doi:10.1007/978-94-017-0932-3.
  11. J. Wu, X. Jiang, A. Wheatley, Characterizing activated sludge process effluent by particle size distribution, respirometry and modelling, Desalination, 249 (2009) 969–975. doi:10.1016/j.desal.2009.06.061.
  12. G.W. Fuhs, M. Chen, Microbiological basis of phosphate removal in the activated sludge process for the treatment of wastewater, Microb. Ecol., 2 (1975) 119–138. doi:10.1007/BF02010434.
  13. K.V. Gernaey, M.C.M. Van Loosdrecht, M. Henze, M. Lind, S.B. Jørgensen, Activated sludge wastewater treatment plant modelling and simulation: State of the art, in: Environ. Model. Softw., 2004: pp. 763–783. doi:10.1016/j.envsoft.2003.03.005.
  14. D. Nourmohammadi, M.-B. Esmaeeli, H. Akbarian, M. Ghasemian, Nitrogen removal in a full-scale domestic wastewater treatment plant with activated sludge and trickling filter., J. Environ. Public Health. (2013) 504705. doi:10.1155/2013/504705.
  15. P. Bérubé, Sustainable Water for the Future: Water Recycling versus Desalination, Elsevier, 2010. doi:10.1016/S1871-2711(09)00209-8.
  16. A. Giwa, I. Ahmed, S.W. Hasan, Enhanced sludge properties and distribution study of sludge components in electricallyenhanced membrane bioreactor., J. Environ. Manage., 159 (2015) 78–85. doi:10.1016/j.jenvman.2015.05.035.
  17. B. Jefferson, A. Laine, S. Judd, T. Stephenson, Membrane bioreactors and their role in wastewater reuse, (2000). http://www.iwaponline.com/wst/04101/wst041010197.htm (accessed January 8, 2015).
  18. S. Judd, The MBR Book: Principles and Applications of Membrane Bioreactors for Water and Wastewater Treatment, Elsevier/Butterworth-Heinemann, 2011. https://books. google.com/books?id=joSAwT0vUcMC&pgis=1 (accessed January 8, 2015).
  19. S. Judd, Submerged membrane bioreactors: flat plate or hollow fibre?, Filtr. Sep. 39 (2002) 30–31. doi:10.1016/S0015-1882(02)80169-0.
  20. S.A. Deowan, S.I. Bouhadjar, J. Hoinkis, Membrane bioreactors for water treatment, in: Adv. Membr. Technol. Water Treat., Elsevier, 2015: pp. 155–184. doi:10.1016/B978-1-78242-121-4.00005-8.
  21. C. Wisniewski, Membrane bioreactor for water reuse, Desalination, 203 (2007) 15–19. doi:10.1016/j.desal.2006.05.002.
  22. S.A. Deowan, S.I. Bouhadjar, J. Hoinkis, Advances in Membrane Technologies for Water Treatment, Elsevier, 2015. doi:10.1016/B978-1-78242-121-4.00005-8.
  23. M. Elektorowicz, S.W. Hasan, J.A. Oleszkiewicz, Pilot studies of a novel submerged membrane electro-bioreactor (SMEBR), in: Proc. Water Environ. Fed. WEFTEC, 2011: pp. 3605–3611.
  24. A. Massé, M. Spérandio, C. Cabassud, Comparison of sludge characteristics and performance of a submerged membrane bioreactor and an activated sludge process at high solids retention time, Water Res., 40 (2006) 2405–2415. doi:10.1016/j.watres.2006.04.015.
  25. A. Giwa, S.W. Hasan, Theoretical investigation of the influence of operating conditions on the treatment performance of an electrically-induced membrane bioreactor, J. Water Process Eng., 6 (2015) 72–82. doi:10.1016/j.jwpe.2015.03.004.
  26. S. Smith, S. Judd, T. Stephenson, B. Jefferson, Membrane bioreactors — hybrid activated sludge or a new process?, Membr. Technol. 2003 (2003) 5–8. doi:10.1016/S0958-2118(03)00015-6.
  27. S.W. Hasan, M. Elektorowicz, J.A. Oleszkiewicz, Start-up period investigation of pilot-scale submerged membrane electro-bioreactor (SMEBR) treating raw municipal wastewater., Chemosphere, 97 (2014) 71–77. doi:10.1016/j.chemosphere.2013.11.009.
  28. A. Giwa, S.W. Hasan, Numerical modeling of an electrically enhanced membrane bioreactor (MBER) treating mediumstrength wastewater, J. Environ. Manage., 159 (2015) 78–85. doi:10.1016/j.jenvman.2015.08.031.
  29. K. Sombatsompop, Membrane fouling studies in suspended and attached growth membrane bioreactor systems, Asian Institute of Technology, 2007.
  30. M. Elektorowicz, S.W. Hasan, J.A. Oleszkiewicz, A novel submerged membrane electrobioreactor achieves high removal efficiencies, J. Water Environ. Technol., (2011) 60–62.
  31. K. Bani-Melhem, M. Elektorowicz, Performance of the submerged membrane electro-bioreactor (SMEBR) with iron electrodes for wastewater treatment and fouling reduction, J. Memb. Sci., 379 (2011) 434–439. doi:10.1016/j.memsci.2011.06.017.
  32. L. Liu, J. Liu, B. Gao, F. Yang, S. Chellam, Fouling reductions in a membrane bioreactor using an intermittent electric field and cathodic membrane modified by vapor phase polymerized pyrrole, J. Memb. Sci., 394–395 (2012) 202–208. doi:10.1016/j.memsci.2011.12.042.
  33. M. Zeyoudi, E. Altenaiji, L.Y. Ozer, I. Ahmed, A.F. Yousef, S.W. Hasan, Impact of continuous and intermittent supply of electric field on the function and microbial community of wastewater treatment electro-bioreactors, Electrochim. Acta. (2015). doi:10.1016/j.electacta.2015.04.095.
  34. S. Hasan, Design and performance of a pilot submerged membrane electro-bioreactor (SMEBR) for wastewater treatment, Concordia University, Montreal, Canada, 2012.
  35. S.W. Hasan, M. Elektorowicz, J.A. Oleszkiewicz, Correlations between trans-membrane pressure (TMP) and sludge properties in submerged membrane electro-bioreactor (SMEBR) and conventional membrane bioreactor (MBR)., Bioresour. Technol. 120 (2012) 199–205. doi:10.1016/j.biortech.2012.06.043.
  36. A. Giwa, S.M. Jung, W. Fang, J. Kong, S.W. Hasan, Bioelectrochemical process coupled with MnO2 nanowires for wastewater treatment, Int. J. Chem. Mol. Nucl. Mater. Metall. Eng., 10 (2016) 545–548.
  37. United States Environmental Protection Agency, Drinking water standards and health advisories table, California, USA, 2007.
  38. A. Hannouche, G. Chebbo, G. Ruban, B. Tassin, B.J. Lemaire, C. Joannis, Relationship between turbidity and total suspended solids concentration within a combined sewer system., Water Sci. Technol., 64 (2011) 2445–2452. doi:10.2166/wst.2011.779.
  39. S. Abhishek, A.K. Khambete, Statistical analysis to identify the main parameters to the wastewater quality index of CETP: a case study at vapi, Gujarat, India, J. Environ. Res. Dev., 7 (2013).
  40. M.C. Wentzel, A. Mbewe, G.A. Ekama, Batch test for the measurement of readily biodegradable COD and active organism concentrations in municipal wastewaters., Water SA. 21 (1995) 117–124.
  41. A. Mbewe, M.C. Wentzel, M.T. Lakay, G.A. Ekama, Characterization of the carbonaceous materials in municipal wastewaters., in: WISA Bienn. Conf., Cape Town, South Africa, 1998.
  42. APHA, AWWA, WEF, Standard Methods for the Examination of Water and Wastewater, 1999.
  43. M. Sharma, S. Saha, Graph based approach for minimum multicollinearity highly accurate regression model explaining maximum variability, in: Proc. 5th Int. Conf. Conflu. 2014 Next Gener. Inf. Technol. Summit, 2014: pp. 304–308. doi:10.1109/CONFLUENCE.2014.6949292.
  44. D.C. Montgomery, E.A. Peck, G.G. Vining, Introduction to Linear Regression Analysis, 2001. doi:10.1198/tech.2007.s499.
  45. A. Giwa, N. Akther, V. Dufour, S.W. Hasan, A critical review on recent polymeric and nano-enhanced membranes for reverse osmosis, RSC Adv., 6 (2016) 8134–8163. doi:10.1039/C5RA17221G.
  46. P. Drogui, J.-F. Blais, G. Mercier, Review of electrochemical technologies for environmental applications, Recent Patents Eng., 1 (2007) 257–272. doi:10.2174/187221207782411629.
  47. C.J. Gippel, Potential of turbidity monitoring for measuring the transport of suspended solids in streams, Hydrol. Process. 9 (1995) 83–97. doi:10.1002/hyp.3360090108.
  48. R.J. Davies-Colley, D.G. Smith, Turbidity suspended sediment, and water clarity: A review, J. Am. Water Resour. Assoc., 37 (2001) 1085–1101. doi:10.1111/j.1752-1688.2001.tb03624.x.
  49. S. Zhang, R. Van Houten, D.H. Eikelboom, H. Doddema, Z. Jiang, Y. Fan, Sewage treatment by a low energy membrane bioreactor, Biores. Technol., 90 (2003) 185–192. doi:10.1016/S0960-8524(03)00115-9.
  50. J.A. Gil, L. Túa, A. Rueda, B. Montaño, M. Rodríguez, D. Prats, Monitoring and analysis of the energy cost of an MBR, Desalination, 250 (2010) 997–1001. doi:10.1016/j.desal.2009.09.089.
  51. D. Bolzonella, F. Fatone, P. Pavan, F. Cecchi, Application of a membrane bioreactor for winery wastewater treatment, Water Sci. Technol., 62 (2010) 2754–2759. doi:10.2166/wst.2010.645.
  52. C. Hamann, A. Hamnett, W. Vielstich, Electrochemistry, Second, WILEY-VCH, Weinheim, Germany, 2007.
  53. Regulation and Supervision Bureau, Annual report 2013, Abu Dhabi, United Arab Emirates, 2014.
  54. E. Bouhabila, Fouling characterisation in membrane bioreactors, Sep. Purif. Technol., 22–23 (2001) 123–132. doi:10.1016/S1383-5866(00)00156-8.
  55. S. Ibeid, M. Elektorowicz, J.A. Oleszkiewicz, Novel electrokinetic approach reduces membrane fouling., Water Res., 47 (2013) 6358–6366. doi:10.1016/j.watres.2013.08.007.