References

  1. UNESCO, The United Nations World Water Development Report 4: Managing Water Under Uncertainty and Risk, in World Water Assessment Programme, Vol. 1, 2012, p. 407.
  2. United Nations Department of Economic and Social Affairs, Back to Our Common Future: Sustainable Development in the 21st Century (SD21) project, UNDESA, p. 39, 2012.
  3. WWAP (United Nations World Water Assessment Programme), The United Nations World Water Development Report 2015: Water for a Sustainable World., United Nations Educational, Scientific and Cultural Organization, Paris, 2015.
  4. F. Van Weert, J. Van der Gun, Saline and Brackish Groundwater at Shallow and Intermediate Depths: Genesis and World-Wide Occurrence, 2012 Congr. Can. Branch Int. Assoc. Hydrogeol., 2012, pp. 1–9.
  5. C. Li, Y. Goswami, E. Stefanakos, Solar assisted sea water desalination: a review, Renew. Sustain. Energy Rev., 19 (2013) 136–163.
  6. P. Palenzuela, G. Zaragoza, D. C. Alarcón-Padilla, J. Blanco, Evaluation of cooling technologies of concentrated solar power plants and their combination with desalination in the mediterranean area, Appl. Thermal Eng., 50 (2013) 1514–1521.
  7. A. Gregorzewski, K. Genthner, E. Zarza, J. Leon, J. de Gunzbourg, G. Alfeld, J. Scharfe, Solar thermal desalination research project at the Plataforma Solar de Almeria, Desalination, 82 (1991) 145–152.
  8. A. Al-Karaghouli, L.L. Kazmerski, Energy consumption and water production cost of conventional and renewable-energypowered desalination processes, Renew. Sustain. Energy Rev., 24 (2013) 343–356.
  9. A. Ghobeity, A. Mitsos, Optimal design and operation of desalination systems: new challenges and recent advances, Curr. Opin. Chem. Eng., 6 (2014) 61–68.
  10. R. K. Kamali, A. Abbassi, S.A. Sadough Vanini, A simulation model and parametric study of MED-TVC process, Desalination, 235 (2009) 340–351.
  11. I. Janghorban Esfahani, A. Ataei, K.V. Shetty, T. Oh, J.H. Park, C. Yoo, Modeling and genetic algorithm-based multi-objective optimization of the MED-TVC desalination system, Desalination, 292 (2012) 87–104.
  12. E. Ali, Understanding the operation of industrial MSF plants. Part I: stability and steady-state analysis, Desalination, 143 (2002) 53–72.
  13. F. Nematollahi, A. Rahimi, T.T. Gheinani, Experimental and theoretical energy and exergy analysis for a solar desalination system, Desalination, 317 (2013) 23–31.
  14. H.S. Choi, T.J. Lee, Y.G. Kim, S.L. Song, Performance improvement of multiple-effect distiller with thermal vapor compression system by exergy analysis, Desalination, 182 (2005) 239–249.
  15. C. Frantz, B. Seifert, Thermal analysis of a multi effect distillation plant powered by a solar tower plant, Energy Procedia, 69 (2015) 1928–1937.
  16. T.H. Dahdah, A. Mitsos, Structural optimization of seawater desalination: II novel MED-MSF-TVC configurations, Desalination, 344 (2014) 219–227.
  17. A.O.B. Amer, Development and optimization of ME-TVC desalination system, Desalination, 249 (2009) 1315–1331.
  18. P. Palenzuela, A.S. Hassan, G. Zaragoza, D.C. Alarcon-Padilla, Steady state model for multi-effect distillation case study: Plataforma Solar de Almeria MED pilot plant, Desalination, 337 (2014) 31–42.
  19. A. de la Calle, J. Bonilla, L. Roca, P. Palenzuela, Dynamic modeling and simulation of a solar-assisted multi-effect distillation plant, Desalination, 357 (2015) 65–76.
  20. D.C. Alarcón-Padilla, J. Blanco-Gálvez, L. García-Rodríguez, W. Gernjak, S. Malato-Rodríguez, First experimental results of a new hybrid solar/gas multi-effect distillation system: the AQUASOL project, Desalination, 220 (2008) 619–625.
  21. P. Fernández-Izquierdo, L. García-Rodríguez, D.C. Alarcón-Padilla, P. Palenzuela, I. Martín-Mateos, Experimental analysis of a multi-effect distillation unit operated out of nominal conditions, Desalination, 284 (2012) 233–237.
  22. D.C. Alarcón-Padilla, L. García-Rodríguez, J. Blanco-Gálvez, Assessment of an absorption heat pump coupled to a multi-effect distillation unit within AQUASOL project, Desalination, 212 (2007) 303–310.
  23. M. Ibarra, D.C. Alarcón-Padilla, J. Blanco-Gálvez, G. Zaragoza, P. Palenzuela, Performance of Small Parabolic Through Collector as Thermal Energy Supply to Steam Generation, Proc. SolarPACES Conference, 2012, p. 24997.
  24. J. Blanco, D. Alarcón, E. Guillén, W. Gernjak, The AQUASOL system: solar collector field efficiency and solar-only mode performance, J. Sol. Energy Eng., 133 (2011) 11009.
  25. M. Association, Modelica ® – a unified object-oriented language for physical systems modeling language specification, Interface, 5 (2010) 250.
  26. M. Otter, H. Elmqvist, F.E. Cellier, Modeling of multibody systems with the object-oriented modeling language Dymola, Nonlinear Dyn., 9 (1996) 91–112.
  27. L.R. Petzold, A Description of Dassl: A Differential/Algebraic System Solver, Sand828637, January 1982,
    pp. 3–7.
  28. A. Pfeiffer, Optimization Library for Interactive Multi-Criteria Optimization Tasks, Proc. 9th International Modelica Conference, 2012, pp. 669–680.