References

  1. F.R. Rijsberman, Water scarcity: fact or fiction? Agric. Water Manage., 80 (2006) 5–22.
  2. K. Chon, J. Cho, H.K. Shon, A pilot-scale hybrid municipal wastewater reclamation system using combined coagulation and disk filtration, ultrafiltration, and reverse osmosis: removal of nutrients and micropollutants, and characterization of membrane foulants, Bioresour. Technol., 141 (2013) 109–116.
  3. Y. Picó, D. Barceló, Transformation products of emerging contaminants in the environment and high-resolution mass spectrometry: a new horizon, Anal. Bioanal. Chem., 407 (2015) 6257–6273.
  4. X.M. Wang, B. Li, T. Zhang, X.Y. Li, Performance of nanofiltration membrane in rejecting trace organic compounds: experiment and model prediction, Desalination, 370 (2015) 7–16.
  5. B. Silva, F. Costa, I.C. Neves, T. Tavares, Psychiatric Pharmaceuticals as Emerging Contaminants in Wastewater, Springer International Publishing, Switzerland, 2015.
  6. K.K. Ng, A.Y.C. Lin, T.H. Yu, C.F. Lin, Tertiary treatment of pharmaceuticals and personal care products by pretreatment and membrane processes, Sustainable Environ. Res., 21 (2011) 173–180.
  7. K. Fischer, M. Grimm, J. Meyers, C. Dietrich, R. Gläser, A. Schulze, Photoactive microfiltration membranes via directed synthesis of TiO2 nanoparticles on the polymer surface for removal of drugs from water, J. Membr. Sci., 478 (2015) 49–57.
  8. K. Kimura, G. Amy, J.E. Drewes, T. Heberer, T. Kim, Y. Watanabe, Rejection of organic micropollutants (disinfection by-products, endocrine disrupting compounds, and pharmaceutically active compounds) by NF/RO membranes, J. Membr. Sci., 227 (2003) 113–121.
  9. S.A. Snyder, S. Adham, A.M. Redding, F.S. Cannon, J. DecCarolis, J. Oppeneimer, E.C. Wert, Y. Yoon, Role of membranes and activated carbon in the removal of endocrine disruptors and pharmaceuticals, Desalination, 202 (2007) 156–181.
  10. P. Vazquez-Roig, V. Andreu, M. Onghena, C. Blasco, Y. Picó, Assessment of the occurrence and distribution of pharmaceuticals in a Mediterranean wetland (L’Albufera, Valencia, Spain) by LC-MS/MS, Anal. Bioanal. Chem., 400 (2011) 1287–1301.
  11. E. Gracia-Lor, J.V. Sancho, R. Serrano, F. Hernández, Occurrence and removal of pharmaceuticals in wastewater treatment plants at the Spanish Mediterranean area of Valencia, Chemosphere, 87 (2012) 453–462.
  12. L.D. Nghiem, S. Hawkes, Effects of membrane fouling on the nanofiltration of pharmaceutically active compounds (PhACs): mechanisms and role of membrane pore size, Sep. Purif. Technol., 57 (2007) 182–190.
  13. S.O. Ganiyu, E.D. Van Hullebusch, M. Cretin, G. Esposito, M.A. Oturan, Coupling of membrane filtration and advanced oxidation processes for removal of pharmaceutical residues: a critical review, Sep. Purif. Technol., 156 (2015) 891–914.
  14. C. Labbez, P. Fievet, F. Thomas, A. Szymczyk, A. Vidonne, A. Foissy, P. Pagetti, Evaluation of the “DSPM” model on a titania membrane: measurements of charged and uncharged solute retention, electrokinetic charge, pore size, and water permeability, J. Colloid Interf. Sci., 262 (2003) 200–211.
  15. A. Simon, L.D. Nghiem, P. Le-Clech, S.J. Khan, J.E. Drewes, Effects of membrane degradation on the removal of pharmaceutically active compounds (PhACs) by NF/RO filtration processes, J. Membr. Sci., 340 (2009) 16–25.
  16. J. Kujawa, W. Kujawski, Functionalization of ceramic metal oxide powders and ceramic membranes by perfluoroalkylsilanes and alkylsilanes possessing different reactive groups: physicochemical and tribological properties, ACS Appl. Mater. Interfaces, 8 (2016) 7509–7521.
  17. J. Kujawa, S. Cerneaux, W. Kujawski, M. Bryjak, J. Kujawski, How to functionalize ceramics by perfluoroalkylsilanes for membrane separation process? Properties and application of hydrophobized ceramic membranes, ACS Appl. Mater. Interfaces, 8 (2016) 7564–7577.
  18. J. Garcia-Ivars, M.I. Iborra-Clar, M.I. Alcaina-Miranda, J.A. Mendoza-Roca, L. Pastor-Alcañiz, Surface photomodification of flat-sheet PES membranes with improved antifouling properties by varying UV irradiation time and additive solution pH, Chem. Eng. J., 283 (2016) 231–242.
  19. A. Vona, F. Di Martino, J. García-Ivars, Y. Picó, J.A. Mendoza-Roca, M.I. Iborra-Clar, Comparison of different removal techniques for selected pharmaceuticals, J. Water Process Eng., 5 (2015) 48–57.
  20. M.J. Andrés-Costa, U. Escrivá, V. Andreu, Y. Picó, Estimation of alcohol consumption during “Fallas” festivity in the wastewater of Valencia city (Spain) using ethyl sulphate as a biomarker, Sci. Total Environ., 541 (2016) 616–622.
  21. E. Carmona, V. Andreu, Y. Picó, Occurrence of acidic pharmaceuticals and personal care products in Turia River Basin: From waste to drinking water, Sci. Total Environ., 484 (2014) 53–63.
  22. X. Jin, J. Shan, C. Wang, J. Wei, C.Y. Tang, Rejection of pharmaceuticals by forward osmosis membranes, J. Hazard. Mater., 227–228 (2012) 55–61.
  23. E.E. Chang, Y.C. Chang, C.H. Liang, C.P. Huang, P.C. Chiang, Identifying the rejection mechanism for nanofiltration membranes fouled by humic acid and calcium ions exemplified by acetaminophen, sulfamethoxazole and triclosan, J. Hazard. Mater., 221–222 (2012) 19–27.
  24. M. Xie, W.E. Price, L.D. Nghiem, Rejection of pharmaceutically active compounds by forward osmosis: role of solution pH and membrane orientation, Sep. Purif. Technol., 93 (2012) 107–114.
  25. M.J. Corbatón-Báguena, S. Álvarez-Blanco, M.C. Vincent-Vela, Cleaning of ultrafiltration membranes fouled with BSA by means of saline solutions, Sep. Purif. Technol., 125 (2014) 1–10.
  26. P.J. Evans, M.R. Bird, A. Pihlajamäki, M. Nyström, The influence of hydrophobicity, roughness and charge upon ultrafiltration membranes for black tea liquor clarification, J. Membr. Sci., 313 (2008) 250–262.
  27. M.J. Corbatón-Báguena, S. Álvarez-Blanco, M.C. Vincent-Vela, Salt cleaning of ultrafiltration membranes fouled by whey model solutions, Sep. Purif. Technol., 132 (2014) 226–233.
  28. D. Norberg, S. Hong, J. Taylor, Y. Zhao, Surface characterization and performance evaluation of commercial fouling resistant low-pressure RO membranes, Desalination, 202 (2007) 45–52.
  29. Y. Yoon, P. Westerhoff, S.A. Snyder, E.C. Wert, Nanofiltration and ultrafiltration of endocrine disrupting compounds, pharmaceuticals and personal care products, J. Membr. Sci., 270 (2006) 88–100.
  30. A.R.D. Verliefde, S.G.J. Heijman, E.R. Cornelissen, G. Amy, B. Van der Bruggen, J.C. Van Dijk, Influence of electrostatic interactions on the rejection with NF and assessment of the removal efficiency during NF/GAC treatment of pharmaceutically active compounds in surface water, Water Res., 41 (2007) 3227–3240.
  31. S. Hajibabania, A. Verliefde, J.E. Drewes, L.D. Nghiem, J. McDonald, S. Khan, P. Le-Clech, Effect of fouling on removal of trace organic compounds by nanofiltration, Drinking Water Eng. Sci., 4 (2011) 71–82.
  32. B. Van der Bruggen, A. Verliefde, L. Braeken, E.R. Cornelissen, K. Moons, J. Verbeck, H. Van Dijk, G. Amy, Assessment of a semi-quantitative method for estimation of the rejection of organic compounds in aqueous solution in nanofiltration, J. Chem. Technol. Biotechnol., 81 (2006) 1166–1176.
  33. R. López Fernández, J.A. McDonald, S.J. Khan, P. Le-Clech, Removal of pharmaceuticals and endocrine disrupting chemicals by a submerged membrane photocatalysis reactor (MPR), Sep. Purif. Technol., 127 (2014) 131–139.