References
- P. Wang, X. Bian, Y. Li, Catalytic oxidation of phenol in
wastewater — a new application of the amorphous Fe78Si9B13
alloy, Chin. Sci. Bull., 57 (2012) 33–40.
- M. Choquette-Labbé, W. Shewa, J. Lalman, S. Shanmugam,
Photocatalytic degradation of phenol and phenol derivatives
using a nano-TiO2 catalyst: integrating quantitative and
qualitative factors using response surface methodology, Water,
6 (2014) 1785.
- L.F. Liotta, M. Gruttadauria, G. Di Carlo, G. Perrini, V. Librando,
Heterogeneous catalytic degradation of phenolic substrates:
catalysts activity, J. Hazard. Mater., 162 (2009) 588–606.
- A.S. Whiteley, M.J. Bailey, Bacterial community structure and
physiological state within an industrial phenol bioremediation
system, Appl. Environ. Microbiol., 66 (2000) 2400–2407.
- Y.-H. Shen, Removal of phenol from water by adsorption–flocculation using organobentonite, Water Res., 36 (2002) 1107–1114.
- F.A. Banat, B. Al-Bashir, S. Al-Asheh, O. Hayajneh, Adsorption
of phenol by bentonite, Environ. Pollut., 107 (2000) 391–398.
- R. Mukherjee, S. De, Adsorptive removal of phenolic compounds
using cellulose acetate phthalate–alumina nanoparticle mixed
matrix membrane, J. Hazard. Mater., 265 (2014) 8–19.
- Y.B. Feng, L. Hong, A.L. Liu, W.D. Chen, G.W. Li, W. Chen, X.H.
Xia, High-efficiency catalytic degradation of phenol based
on the peroxidase-like activity of cupric oxide nanoparticles,
Int. J. Environ. Sci. Technol.,
12 (2013) 653–660.
- U. Bali, E.Ç. Çatalkaya, F. Şengül, Photochemical degradation
and mineralization of phenol: a comparative study, J. Environ.
Sci. Health, Pt. A, 38 (2003) 2259–2275.
- Y. Tao, Z.L. Cheng, K.E. Ting, X.J. Yin, Photocatalytic
degradation of phenol using a nanocatalyst: the mechanism
and kinetics, J. Catalysts, 2013 (2013) 6.
- M. Pera-Titus, V. Garcıá -Molina, M.A. Baños, J. Giménez, S.
Esplugas, Degradation of chlorophenols by means of advanced
oxidation processes: a general review, Appl. Catal. B, 47 (2004)
219–256.
- E. Casbeer, V.K. Sharma, X.-Z. Li, Synthesis and photocatalytic
activity of ferrites under visible light: a review, Sep. Purif.
Technol., 87 (2012) 1–14.
- P.V. Nidheesh, Heterogeneous Fenton catalysts for the
abatement of organic pollutants from aqueous solution: a
review, RSC Adv., 5 (2015) 40552–40577.
- S.-Q. Liu, L.-R. Feng, N. Xu, Z.-G. Chen, X.-M. Wang, Magnetic
nickel ferrite as a heterogeneous photo-Fenton catalyst for the
degradation of rhodamine B in the presence of oxalic acid,
Chem. Eng. J., 203 (2012) 432–439.
- A.S. Albuquerque, M.V.C. Tolentino, J.D. Ardisson, F.C.C.
Moura, R. de Mendonça, W.A.A. Macedo, Nanostructured
ferrites: structural analysis and catalytic activity, Ceram. Int.,
38 (2012) 2225–2231.
- Q. Chen, Z.J. Zhang, Size-dependent superparamagnetic
properties of MgFe2O4 spinel ferrite nanocrystallites, Appl.
Phys. Lett., 73 (1998) 3156–3158.
- P. Vaqueiro, M. Arturo Lopez-quintela, Synthesis of yttrium
aluminium garnet by the citrate gel process, J. Mater. Chem.,
8 (1998) 161–163.
- C.W. Lim, I.S. Lee, Magnetically recyclable nanocatalyst
systems for the organic reactions, Nano Today, 5 (2010) 412–434.
- S.D. Sartale, C.D. Lokhande, M. Muller, Electrochemical synthesis
of nanocrystalline CuFe2O4 thin films from non-aqueous
(ethylene glycol) medium, Mater. Chem. Phys., 80 (2003) 120–128.
- K.-S. Kang, C.-H. Kim, W.-C. Cho, K.-K. Bae, S.-W. Woo, C.-S. Park,
Reduction characteristics of CuFe2O4
and Fe3O4 by methane;
CuFe2O4 as an oxidant for two-step thermochemical methane
reforming, Int. J. Hydrogen Energy, 33 (2008) 4560–4568.
- N. Nasrallah, M. Kebir, Z. Koudri, M. Trari, Photocatalytic
reduction of Cr(VI) on the novel hetero-system CuFe2O4/CdS,
J. Hazard. Mater., 185 (2011) 1398–1404.
- M.M. Rashad, R.M. Mohamed, M.A. Ibrahim, L.F.M. Ismail,
E.A. Abdel-Aal, Magnetic and catalytic properties of cubic
copper ferrite nanopowders synthesized from secondary
resources, Adv. Powder Technol., 23 (2012) 315–323.
- J.-C. Lou, C.-K. Chang, Catalytic oxidation of CO over a catalyst
produced in the ferrite process, Environ. Eng. Sci., 23 (2006)
1024–1032.
- Y.L.N. Murthy, B.S. Diwakar, B. Govindh, K. Nagalakshmi,
I.V.K. Viswanath, R. Singh, Nano copper ferrite: a reusable
catalyst for the synthesis of β, γ-unsaturated ketones, J. Chem.
Sci., 124 (2012) 639–645.
- A. Gharib, N. Noroozi Pesyan, L. Vojdani Fard, M. Roshani,
Catalytic synthesis of a-aminonitriles using nano copper
ferrite under green conditions, Org. Chem. Int., 2014 (2014) 8.
- S. Rahman, K. Nadeem, M. Anis-ur-Rehman, M. Mumtaz,
S. Naeem, I. Letofsky-Papst, Structural and magnetic
properties of ZnMg-ferrite nanoparticles prepared using the
co-precipitation method, Ceram. Int., 39 (2013) 5235–5239.
- B.K. Chatterjee, K. Bhattacharjee, A. Dey, C.K. Ghosh, K.K.
Chattopadhyay, Influence of spherical assembly of copper
ferrite nanoparticles on magnetic properties: orientation of
magnetic easy axis, Dalton Trans., 43 (2014) 7930–7944.
- R. Köferstein, T. Walther, D. Hesse, S.G. Ebbinghaus,
Crystallite-growth, phase transition, magnetic properties, and
sintering behaviour of nano-CuFe2O4 powders prepared by a
combustion-like process, J. Solid State Chem., 213 (2014) 57–64.
- J. Wu, X. Wang, H. Kang, J. Zhang, C. Yang, CuFe2O4 as
heterogeneous catalyst in degradation of p-nitrophenol with
photoelectron-Fenton-like process, Int. J. Environ. Stud.,
71 (2014) 534–545.
- J. Zheng, Z. Lin, W. Liu, L. Wang, S. Zhao, H. Yang, L. Zhang,
One-pot synthesis of CuFe2O4 magnetic nanocrystal clusters
for highly specific separation of histidine-rich proteins,
J. Mater. Chem. B, 2 (2014) 6207–6214.
- R. Koferstein, T. Walther, D. Hesse, S.G. Ebbinghaus,
Preparation and characterization of nanosized magnesium
ferrite powders by a starch-gel process and corresponding
ceramics, J. Mater. Sci., 48 (2013) 6509–6518.
- A. Loganathan, K. Kumar, Effects on structural, optical, and
magnetic properties of pure and Sr-substituted MgFe2O4
nanoparticles at different calcination temperatures, Appl.
Nanosci., 6 (2016) 629–639.
- Z. Jia, D. Ren, Y. Liang, R. Zhu, A new strategy for the
preparation of porous zinc ferrite nanorods with subsequently
light-driven photocatalytic activity, Mater. Lett., 65 (2011)
3116–3119.
- T. Tsoncheva, E. Manova, N. Velinov, D. Paneva, M. Popova, B.
Kunev, K. Tenchev, I. Mitov, Thermally synthesized nanosized
copper ferrites as catalysts for environment protection, Catal.
Commun., 12 (2010) 105–109.
- J.E. Tasca, C.E. Quincoces, A. Lavat, A.M. Alvarez, M.G.
González, Preparation and characterization of CuFe2O4 bulk
catalysts, Ceram. Int., 37 (2011) 803–812.
- Z. Zhu, F. Liu, H. Zhang, J. Zhang, L. Han, Photocatalytic
degradation of 4-chlorophenol over Ag/MFe2O4
(M = Co, Zn,
Cu, and Ni) prepared by a modified chemical co-precipitation
method: a comparative study, RSC Adv., 5 (2015) 55499–55512.
- N.M. Deraz, Production and characterization of pure and
doped copper ferrite nanoparticles, J. Anal. Appl. Pyrolysis,
82 (2008) 212–222.
- M. Farid, I. Ahmad, S. Aman, M. Kanwal, G. Murtaza,
I. Alia, M. Ishfaq, SEM, FTIR and dielectric properties of cobalt
substituted spinel ferrites, J. Ovon Res., 11 (2015) 1–10.
- A. Pradeep, G. Chandrasekaran, FTIR study of Ni, Cu and Zn
substituted nano-particles of MgFe2O4, Mater. Lett., 60 (2006)
371–374.
- J.D. Kisan Zipare, S. Bandgar, V. Mathe, G.
Shahane, Superparamagnetic manganese ferrite nanoparticles:
synthesis and magnetic properties, J. Nanosci. Nanoeng.,
1 (2015) 178–182.
- N.M. Mahmoodi, Zinc ferrite nanoparticle as a magnetic
catalyst: synthesis and dye degradation, Mater. Res. Bull., 48
(2013) 4255–4260.
- H. Jiao, G. Jiao, J. Wang, Preparation and magnetic properties of
CuFe2O4 nanoparticles, Synth. React. Inorg. Me., 43 (2013) 131–134.
- Y. Ding, Y. Yang, H. Shao, Synthesis and characterization
of nanostructured CuFe2O4 anode material for lithium ion
battery, Solid State Ionics, 217 (2012) 27–33.
- A.R. Tehrani-Bagha, M. Gharagozlou, F. Emami, Catalytic wet
peroxide oxidation of a reactive dye by magnetic copper ferrite
nanoparticles, J. Environ. Chem. Eng., 4 (2016) 1530–1536.
- Amarjeet, V. Kumar, Synthesis, thermal and FTIR study
of Zn-Fe nano ferrites, Int. J. Lat. Res. Sci. Technol., 3 (2014)
61–63.
- N. Rezlescu, E. Rezlescu, F. Tudorache, P.D. Popa, Gas sensing
properties of porous Cu-, Cd- and Zn-ferrites, Rom. Rep. Phys.,
61 (2009) 223–234.
- G.V. Buxton, C.L. Greenstock, W.P. Helman, W.P. Ross, Critical
review of rate constants for reactions of hydrated electrons,
hydrogen atoms and hydroxyl radicals in aqueous solution,
J. Phys. Chem. Ref. Data, 17 (1988) 513–886.
- P. Baldrian, V. Merhautova, J. Gabriel, F. Nerud, P. Stopka,
M. Hruby, M.J. Benes, Decolorization of synthetic dyes by
hydrogen peroxide with heterogeneous catalysis by mixed
iron oxides, Appl. Catal., B, 66 (2006) 258–264.
- C. Ramankutty, S. Sugunan, B. Thomas, Study of cyclohexanol
decomposition reaction over the ferrospinels, A1−xCuxFe2O4 (A= Ni or Co and x= 0, 0.3, 0.5, 0.7 and 1), prepared by
‘soft’chemical methods, J. Mol. Catal. A, 187 (2002) 105–117.
- C.G. Ramankutty, S. Sugunan, Surface properties and catalytic
activity of ferrospinels of nickel, cobalt and copper, prepared
by soft chemical methods, Appl. Catal., A, 218 (2001) 39–51.
- Y. Zhao, G. He, W. Dai, H. Chen, High catalytic activity in the
phenol hydroxylation of magnetically separable CuFe2O4–reduced
graphene oxide, Ind. Eng. Chem. Res., 53 (2014) 12566–12574.
- L. Roshanfekr Rad, B. Farshi Ghazani, M. Irani, M. Sadegh
Sayyafan, I. Haririan, Comparison study of phenol
degradation using cobalt ferrite nanoparticles synthesized
by hydrothermal and microwave methods, Desal. Wat. Treat.,
56 (2015) 3393–3402.
- S. Zhu, X. Yang, W. Yang, L. Zhang, J. Wang, M. Huo,
Application of porous nickel-coated TiO2 for the photocatalytic
degradation of aqueous quinoline in an internal airlift loop
reactor, Int. J. Env. Res. Pub. Healh, 9 (2012) 548.
- P.F. Khamaruddin, M.A. Bustam, A.A. Omar. Using Fenton’s
reagents for the Degradation of Diisopropanolamine: Effect
of Temperature and pH, in International Conference on
Environment and Industrial Innovation, Singapore, 2011.
- J. Herney-Ramirez, M.A. Vicente, L.M. Madeira,
Heterogeneous photo-Fenton oxidation with pillared claybased
catalysts for wastewater treatment: a review, Appl.
Catal., B, 98 (2010) 10–26.
- T. Soltani, M.H. Entezari, Solar-Fenton catalytic degradation of
phenolic compounds by impure bismuth ferrite nanoparticles
synthesized via ultrasound, Chem. Eng. J., 251 (2014) 207–216.
- N. Kashif, F. Ouyang, Parameters effect on heterogeneous
photocatalysed degradation of phenol in aqueous dispersion
of TiO2, J. Environ. Sci., 21 (2009) 527–533.
- F.H. Al Hamedi, M.A. Rauf, S.S. Ashraf, Degradation studies
of rhodamine B in the presence of UV/H2O2, Desalination,
239 (2009) 159–166.
- S. Esplugas, J. Giménez, S. Contreras, E. Pascual, M. Rodrıǵuez,
Comparison of different advanced oxidation processes for
phenol degradation, Water Res., 36 (2002) 1034–1042.