References

  1. P. Wang, X. Bian, Y. Li, Catalytic oxidation of phenol in wastewater — a new application of the amorphous Fe78Si9B13 alloy, Chin. Sci. Bull., 57 (2012) 33–40.
  2. M. Choquette-Labbé, W. Shewa, J. Lalman, S. Shanmugam, Photocatalytic degradation of phenol and phenol derivatives using a nano-TiO2 catalyst: integrating quantitative and qualitative factors using response surface methodology, Water, 6 (2014) 1785.
  3. L.F. Liotta, M. Gruttadauria, G. Di Carlo, G. Perrini, V. Librando, Heterogeneous catalytic degradation of phenolic substrates: catalysts activity, J. Hazard. Mater., 162 (2009) 588–606.
  4. A.S. Whiteley, M.J. Bailey, Bacterial community structure and physiological state within an industrial phenol bioremediation system, Appl. Environ. Microbiol., 66 (2000) 2400–2407.
  5. Y.-H. Shen, Removal of phenol from water by adsorption–flocculation using organobentonite, Water Res., 36 (2002) 1107–1114.
  6. F.A. Banat, B. Al-Bashir, S. Al-Asheh, O. Hayajneh, Adsorption of phenol by bentonite, Environ. Pollut., 107 (2000) 391–398.
  7. R. Mukherjee, S. De, Adsorptive removal of phenolic compounds using cellulose acetate phthalate–alumina nanoparticle mixed matrix membrane, J. Hazard. Mater., 265 (2014) 8–19.
  8. Y.B. Feng, L. Hong, A.L. Liu, W.D. Chen, G.W. Li, W. Chen, X.H. Xia, High-efficiency catalytic degradation of phenol based on the peroxidase-like activity of cupric oxide nanoparticles, Int. J. Environ. Sci. Technol.,
    12 (2013) 653–660.
  9. U. Bali, E.Ç. Çatalkaya, F. Şengül, Photochemical degradation and mineralization of phenol: a comparative study, J. Environ. Sci. Health, Pt. A, 38 (2003) 2259–2275.
  10. Y. Tao, Z.L. Cheng, K.E. Ting, X.J. Yin, Photocatalytic degradation of phenol using a nanocatalyst: the mechanism and kinetics, J. Catalysts, 2013 (2013) 6.
  11. M. Pera-Titus, V. Garcıá -Molina, M.A. Baños, J. Giménez, S. Esplugas, Degradation of chlorophenols by means of advanced oxidation processes: a general review, Appl. Catal. B, 47 (2004) 219–256.
  12. E. Casbeer, V.K. Sharma, X.-Z. Li, Synthesis and photocatalytic activity of ferrites under visible light: a review, Sep. Purif. Technol., 87 (2012) 1–14.
  13. P.V. Nidheesh, Heterogeneous Fenton catalysts for the abatement of organic pollutants from aqueous solution: a review, RSC Adv., 5 (2015) 40552–40577.
  14. S.-Q. Liu, L.-R. Feng, N. Xu, Z.-G. Chen, X.-M. Wang, Magnetic nickel ferrite as a heterogeneous photo-Fenton catalyst for the degradation of rhodamine B in the presence of oxalic acid, Chem. Eng. J., 203 (2012) 432–439.
  15. A.S. Albuquerque, M.V.C. Tolentino, J.D. Ardisson, F.C.C. Moura, R. de Mendonça, W.A.A. Macedo, Nanostructured ferrites: structural analysis and catalytic activity, Ceram. Int., 38 (2012) 2225–2231.
  16. Q. Chen, Z.J. Zhang, Size-dependent superparamagnetic properties of MgFe2O4 spinel ferrite nanocrystallites, Appl. Phys. Lett., 73 (1998) 3156–3158.
  17. P. Vaqueiro, M. Arturo Lopez-quintela, Synthesis of yttrium aluminium garnet by the citrate gel process, J. Mater. Chem., 8 (1998) 161–163.
  18. C.W. Lim, I.S. Lee, Magnetically recyclable nanocatalyst systems for the organic reactions, Nano Today, 5 (2010) 412–434.
  19. S.D. Sartale, C.D. Lokhande, M. Muller, Electrochemical synthesis of nanocrystalline CuFe2O4 thin films from non-aqueous (ethylene glycol) medium, Mater. Chem. Phys., 80 (2003) 120–128.
  20. K.-S. Kang, C.-H. Kim, W.-C. Cho, K.-K. Bae, S.-W. Woo, C.-S. Park, Reduction characteristics of CuFe2O4
    and Fe3O4 by methane; CuFe2O4 as an oxidant for two-step thermochemical methane reforming, Int. J. Hydrogen Energy, 33 (2008) 4560–4568.
  21. N. Nasrallah, M. Kebir, Z. Koudri, M. Trari, Photocatalytic reduction of Cr(VI) on the novel hetero-system CuFe2O4/CdS, J. Hazard. Mater., 185 (2011) 1398–1404.
  22. M.M. Rashad, R.M. Mohamed, M.A. Ibrahim, L.F.M. Ismail, E.A. Abdel-Aal, Magnetic and catalytic properties of cubic copper ferrite nanopowders synthesized from secondary resources, Adv. Powder Technol., 23 (2012) 315–323.
  23. J.-C. Lou, C.-K. Chang, Catalytic oxidation of CO over a catalyst produced in the ferrite process, Environ. Eng. Sci., 23 (2006) 1024–1032.
  24. Y.L.N. Murthy, B.S. Diwakar, B. Govindh, K. Nagalakshmi, I.V.K. Viswanath, R. Singh, Nano copper ferrite: a reusable catalyst for the synthesis of β, γ-unsaturated ketones, J. Chem. Sci., 124 (2012) 639–645.
  25. A. Gharib, N. Noroozi Pesyan, L. Vojdani Fard, M. Roshani, Catalytic synthesis of a-aminonitriles using nano copper ferrite under green conditions, Org. Chem. Int., 2014 (2014) 8.
  26. S. Rahman, K. Nadeem, M. Anis-ur-Rehman, M. Mumtaz, S. Naeem, I. Letofsky-Papst, Structural and magnetic properties of ZnMg-ferrite nanoparticles prepared using the co-precipitation method, Ceram. Int., 39 (2013) 5235–5239.
  27. B.K. Chatterjee, K. Bhattacharjee, A. Dey, C.K. Ghosh, K.K. Chattopadhyay, Influence of spherical assembly of copper ferrite nanoparticles on magnetic properties: orientation of magnetic easy axis, Dalton Trans., 43 (2014) 7930–7944.
  28. R. Köferstein, T. Walther, D. Hesse, S.G. Ebbinghaus, Crystallite-growth, phase transition, magnetic properties, and sintering behaviour of nano-CuFe2O4 powders prepared by a combustion-like process, J. Solid State Chem., 213 (2014) 57–64.
  29. J. Wu, X. Wang, H. Kang, J. Zhang, C. Yang, CuFe2O4 as heterogeneous catalyst in degradation of p-nitrophenol with photoelectron-Fenton-like process, Int. J. Environ. Stud., 71 (2014) 534–545.
  30. J. Zheng, Z. Lin, W. Liu, L. Wang, S. Zhao, H. Yang, L. Zhang, One-pot synthesis of CuFe2O4 magnetic nanocrystal clusters for highly specific separation of histidine-rich proteins, J. Mater. Chem. B, 2 (2014) 6207–6214.
  31. R. Koferstein, T. Walther, D. Hesse, S.G. Ebbinghaus, Preparation and characterization of nanosized magnesium ferrite powders by a starch-gel process and corresponding ceramics, J. Mater. Sci., 48 (2013) 6509–6518.
  32. A. Loganathan, K. Kumar, Effects on structural, optical, and magnetic properties of pure and Sr-substituted MgFe2O4 nanoparticles at different calcination temperatures, Appl. Nanosci., 6 (2016) 629–639.
  33. Z. Jia, D. Ren, Y. Liang, R. Zhu, A new strategy for the preparation of porous zinc ferrite nanorods with subsequently light-driven photocatalytic activity, Mater. Lett., 65 (2011) 3116–3119.
  34. T. Tsoncheva, E. Manova, N. Velinov, D. Paneva, M. Popova, B. Kunev, K. Tenchev, I. Mitov, Thermally synthesized nanosized copper ferrites as catalysts for environment protection, Catal. Commun., 12 (2010) 105–109.
  35. J.E. Tasca, C.E. Quincoces, A. Lavat, A.M. Alvarez, M.G. González, Preparation and characterization of CuFe2O4 bulk catalysts, Ceram. Int., 37 (2011) 803–812.
  36. Z. Zhu, F. Liu, H. Zhang, J. Zhang, L. Han, Photocatalytic degradation of 4-chlorophenol over Ag/MFe2O4
    (M = Co, Zn, Cu, and Ni) prepared by a modified chemical co-precipitation method: a comparative study, RSC Adv., 5 (2015) 55499–55512.
  37. N.M. Deraz, Production and characterization of pure and doped copper ferrite nanoparticles, J. Anal. Appl. Pyrolysis, 82 (2008) 212–222.
  38. M. Farid, I. Ahmad, S. Aman, M. Kanwal, G. Murtaza, I. Alia, M. Ishfaq, SEM, FTIR and dielectric properties of cobalt substituted spinel ferrites, J. Ovon Res., 11 (2015) 1–10.
  39. A. Pradeep, G. Chandrasekaran, FTIR study of Ni, Cu and Zn substituted nano-particles of MgFe2O4, Mater. Lett., 60 (2006) 371–374.
  40. J.D. Kisan Zipare, S. Bandgar, V. Mathe, G. Shahane, Superparamagnetic manganese ferrite nanoparticles: synthesis and magnetic properties, J. Nanosci. Nanoeng., 1 (2015) 178–182.
  41. N.M. Mahmoodi, Zinc ferrite nanoparticle as a magnetic catalyst: synthesis and dye degradation, Mater. Res. Bull., 48 (2013) 4255–4260.
  42. H. Jiao, G. Jiao, J. Wang, Preparation and magnetic properties of CuFe2O4 nanoparticles, Synth. React. Inorg. Me., 43 (2013) 131–134.
  43. Y. Ding, Y. Yang, H. Shao, Synthesis and characterization of nanostructured CuFe2O4 anode material for lithium ion battery, Solid State Ionics, 217 (2012) 27–33.
  44. A.R. Tehrani-Bagha, M. Gharagozlou, F. Emami, Catalytic wet peroxide oxidation of a reactive dye by magnetic copper ferrite nanoparticles, J. Environ. Chem. Eng., 4 (2016) 1530–1536.
  45. Amarjeet, V. Kumar, Synthesis, thermal and FTIR study of Zn-Fe nano ferrites, Int. J. Lat. Res. Sci. Technol., 3 (2014) 61–63.
  46. N. Rezlescu, E. Rezlescu, F. Tudorache, P.D. Popa, Gas sensing properties of porous Cu-, Cd- and Zn-ferrites, Rom. Rep. Phys., 61 (2009) 223–234.
  47. G.V. Buxton, C.L. Greenstock, W.P. Helman, W.P. Ross, Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals in aqueous solution, J. Phys. Chem. Ref. Data, 17 (1988) 513–886.
  48. P. Baldrian, V. Merhautova, J. Gabriel, F. Nerud, P. Stopka, M. Hruby, M.J. Benes, Decolorization of synthetic dyes by hydrogen peroxide with heterogeneous catalysis by mixed iron oxides, Appl. Catal., B, 66 (2006) 258–264.
  49. C. Ramankutty, S. Sugunan, B. Thomas, Study of cyclohexanol decomposition reaction over the ferrospinels, A1−xCuxFe2O4 (A= Ni or Co and x= 0, 0.3, 0.5, 0.7 and 1), prepared by ‘soft’chemical methods, J. Mol. Catal. A, 187 (2002) 105–117.
  50. C.G. Ramankutty, S. Sugunan, Surface properties and catalytic activity of ferrospinels of nickel, cobalt and copper, prepared by soft chemical methods, Appl. Catal., A, 218 (2001) 39–51.
  51. Y. Zhao, G. He, W. Dai, H. Chen, High catalytic activity in the phenol hydroxylation of magnetically separable CuFe2O4–reduced graphene oxide, Ind. Eng. Chem. Res., 53 (2014) 12566–12574.
  52. L. Roshanfekr Rad, B. Farshi Ghazani, M. Irani, M. Sadegh Sayyafan, I. Haririan, Comparison study of phenol degradation using cobalt ferrite nanoparticles synthesized by hydrothermal and microwave methods, Desal. Wat. Treat., 56 (2015) 3393–3402.
  53. S. Zhu, X. Yang, W. Yang, L. Zhang, J. Wang, M. Huo, Application of porous nickel-coated TiO2 for the photocatalytic degradation of aqueous quinoline in an internal airlift loop reactor, Int. J. Env. Res. Pub. Healh, 9 (2012) 548.
  54. P.F. Khamaruddin, M.A. Bustam, A.A. Omar. Using Fenton’s reagents for the Degradation of Diisopropanolamine: Effect of Temperature and pH, in International Conference on Environment and Industrial Innovation, Singapore, 2011.
  55. J. Herney-Ramirez, M.A. Vicente, L.M. Madeira, Heterogeneous photo-Fenton oxidation with pillared claybased catalysts for wastewater treatment: a review, Appl. Catal., B, 98 (2010) 10–26.
  56. T. Soltani, M.H. Entezari, Solar-Fenton catalytic degradation of phenolic compounds by impure bismuth ferrite nanoparticles synthesized via ultrasound, Chem. Eng. J., 251 (2014) 207–216.
  57. N. Kashif, F. Ouyang, Parameters effect on heterogeneous photocatalysed degradation of phenol in aqueous dispersion of TiO2, J. Environ. Sci., 21 (2009) 527–533.
  58. F.H. Al Hamedi, M.A. Rauf, S.S. Ashraf, Degradation studies of rhodamine B in the presence of UV/H2O2, Desalination, 239 (2009) 159–166.
  59. S. Esplugas, J. Giménez, S. Contreras, E. Pascual, M. Rodrıǵuez, Comparison of different advanced oxidation processes for phenol degradation, Water Res., 36 (2002) 1034–1042.