References

  1. M.K. Ghose, S. Roy, Lysimeter test of coal plant effluent disposal to land in India, J. Air Waste Manage. Assoc., 49 (1999) 1245–1259.
  2. E.E. Chang, H.J. Hsing, P.C. Chiang, M.Y. Chen, J.Y. Shyng, The chemical and biological characteristics of coke-oven wastewater by ozonation, J. Hazard. Mater., 156 (2008) 560–567.
  3. W.A. Bone, Coal and its scientific uses, FRS. 1980.
  4. G. Shao, J. Li, W. Wang, Z. He, S. Li, Desulfurization and simultaneous treatment of coke-oven wastewater by pulsed corona discharge, J. Electrostat., 62(1) (2004) 1–13.
  5. Pollution Prevention and Abatement Handbook, World Bank Group. July 1998.
  6. B.R. Lim, H.Y. Hu, K. Fujie, Biological degradation and chemical oxidation characteristics of coke-oven wastewater, Water Air Soil Pollut., 146(1–4) (2003) 23–33.
  7. M. Zhang, J.H. Tay, Y. Qian, X.S. Gu, Coke plant wastewater treatment by fixed biofilm system for COD and NH3–N removal, Water Res., 32(2) (1998) 519–527.
  8. J.L. Wang, X.C. Quan, L.B. Wu, Y. Qian, W. Hegemann, Bioaugmentation as a tool to enhance the removal of refractory compound in coke plant wastewater, Process Biochem., 38(5) (2002) 777–781.
  9. X. Zhu, J. Ni, P. Lai, Advanced treatment of biologically pretreated coking wastewater by electrochemical oxidation using boron-doped diamond electrodes, Water Res., 43 (2009) 4347– 4355.
  10. M.H. Zhang, Q.L. Zhao, X. Bai, Z.F. Ye, Adsorption of organic pollutants from coking wastewater by activated coke., Colloids Surf. A., 362 (2010) 140–146.
  11. P. Lai, H.Z. Zhao, C. Wang, J. Ni, Advanced treatment of coking wastewater by coagulation and zero-valent iron processes, J. Hazard. Mater., 147 (2007) 232–239.
  12. P. Lai, H. Zhao, Z. Ye, J. Ni, Assessing the effectiveness of treating coking effluents using anaerobic and aerobic biofilms, Process Biochem., 43 (2008) 229–237.
  13. J. Dasgupta, A. Kumar, D.D Mandal, T. Mandal, S. Datta, Removal of phenol from aqueous solutions using adsorbents derived from low-cost agro-residues, Desal. Water Treat., 57 (2016) 1–25.
  14. K. Mielczarek, J. Bohdziewicz, M. Wlodarczyk-Makula, M. Smol, Modeling performance of commercial membranes in the low-pressure filtration coking wastewater treatment based on mathematical filtration model, Desal. Water Treat., 52(19–21) (2014) 3743–3752.
  15. M. Włodarczyk-Makuła, E. Wisniowska, A. Turek, A. Obstoj, Removal of PAHs from coking wastewater during photodegradation process, Desal. Water Treat., 57 (2016) 1262–1272.
  16. K. Mielczarek, J. Bohdziewicz, M. Włodarczyk-Makuła, M. Smol, Comparison of post-process coke wastewater treatment effectiveness in integrated and hybrid systems that combine coagulation, ultrafiltration, and reverse osmosis, Desal. Water Treat., 52 (2014) 3879–3888.
  17. P. Hema, P. Suneel, Evaluation of physical stability and leachability of Portland Pozzolona Cement (PPC) solidified chemical sludge generated from textile wastewater treatment plants, J. Hazard. Mater., 207–208 (2012) 56–64.
  18. H. Kusic, N. Koprivanac, A.L. Bozic, Minimization of organic pollutant content in aqueous solution by means of AOPs, UV and ozone based technologies, J. Chem. Eng., 123 (2006) 127–137.
  19. D.M. Bila, A.F. Montalvao, A.C. Silva, M. Dezotti, Ozonation of landfill leachate: evaluation of toxicity removal and biodegrability improvement, J. Hazard. Mater., 117 (2005) 235–242.
  20. R.G. Rice, Applications of ozone for industrial wastewater treatment – a review, Ozone Sci. Eng., 18 (1997) 477–515.
  21. A. Turek, M. Włodarczyk-Makuła, Removal of priority PAHs from coking wastewater, CEER. 10 (2013) 139–147.
  22. A. Turek, M. Włodarczyk-Makuła, Oxidation of low molecular weight PAHs in industrial wastewater, LAB Research Laboratory Apparatus. 17 (2012) 14–17.
  23. K.C. Pillai, T.O. Kwon, I.I.S. Moon, Degradation of wastewater from terephthalic acid manufacturing process by ozonation catalyzed with Fe2+, H2O2 and UV light: direct versus indirect ozonation reactions, J. Appl. Catal. B – Environ., 91 (2009) 319– 328.
  24. N. Kishimoto, Y. Morita, H. Tsuno, T. Oomura, H. Mizutani, Advanced oxidation effect of ozonation combined with electrolysis, J. Water Res., 39 (2005) 4661–4672.
  25. P. Xu, M. Janex, P. Savoye, A. Cockx, V. Lazarova, Wastewater disinfection by ozone: main parameters for process design, Water Res., 36 (2002) 1043–1055.
  26. F.J. Rivas, F. Beltran, O. Gimeno, B. Acedo, F. Carvalho, Stabilized leachates: ozone activated carbon treatment and kinetics, J. Water Res., 37 (2003) 4823–4834.
  27. A. Kumar, S. Singha, B. Sengupta, D. Dasgupta, S. Datta, T. Mandal, Intensive insight into the enhanced utilization of rice husk ash: Abatement of rice mill wastewater and recovery of silica as a value added product, Ecol. Eng., 91 (2016) 270–281.
  28. Standard Methods for the Examination of Water and Waste water (20th ed), American Public Health Association, Washington, DC, USA (1998).
  29. S. Salem, A. Amr, H.A. Aziz, M.N. Adlan, Optimization of stabilized leachate treatment using ozone/persulfate in the advanced oxidation process, Waste Manage., 33 (2013) 1434–1441.
  30. K. Ravikumar, K.S. Krishnan, S. Ramalingam, K. Balu, Optimization of process variables by the application of response surface methodology for dye removal using a novel adsorbent, Dyes Pigm., 72 (2007) 66–74.
  31. K. Ravikumar, S. Ramalingam, S. Krishnan, K. Balu, Application of response surface methodology to optimize the process variables for reactive red and acid brown dye removal using a novel adsorbent, Dyes Pigm., 70 (2006) 18–26.
  32. S. Mandal, B. Bhunia, A. Kumar, D. Dasgupta, T. Mandal, S. Datta, P. Bhattacharya, A statistical approach for optimization of media components for phenol degradation by Alcaligenesfaecalis using Plackett-Burman and response surface methodology, Desal. Water Treat., 51(31–33) (2013) 1–12.
  33. C. Chen, H. Chen, X Guo, S. Guo, G. Yan, Advanced ozone treatment of heavy oil refining wastewater by activated carbon supported iron oxide, J. Ind. Eng. Chem., 20 (2014) 2782–2791.
  34. J.N. Sahu, J. Acharya, B.C. Meikap, Response surface modeling and optimization of chromium(VI) removal from aqueous solution using tamarind wood activated carbon in batch process, J. Hazard. Mater., 172 (2009) 818–825.
  35. Y.S. Ho, G. McKay, Pseudo-second order model for adsorption processes, Process Biochem., 34 (1999) 451–465.
  36. Design-Expert 6 User’s Guide, Section 12: Statistical Details: Analysis. 2000.
  37. S. Salem, A. Amr, H.A. Aziz, M.N. Adlan, Optimization of stabilized leachate treatment using ozone/persulfate in the advanced oxidation process, Waste Manage., 33 (2013) 1434–1441.
  38. X. Jing, Y. Cao, X. Zhang, D. Wang, X. Wu, H. Xu, Biosorption of Cr (VI) from simulated wastewater using a cationic surfactant modified spent mushroom, Desalination, 269 (2011) 120–127.
  39. S. Bajpai, S.K. Gupta, A. Dey, M.K. Jha, V. Bajpai, S. Joshi, A. Gupta, Application of central composite design approach for removal of chromium (VI) from aqueous solution using weakly anionic resin: Modeling, optimization, and study of interactive variables, J. Hazard. Mater., 227–228 (2012) 436– 444.
  40. T.A. Kurniawan, W.H. Lo, Removal of refractory compounds from stabilized landfill leachate using an integrated H2O2 oxidation and granular activated carbon (GAC) adsorption treatment, J. Water Res., 43 (2009) 4079–4091.
  41. F.J. Beltran, J. Rivas, P. Alvarez, R. Montero-de-Espinosa, Kinetics of heterogeneous catalytic ozone decomposition in water on an activated carbon, Ozone Sci. Eng., 24 (2002) 227–237.
  42. U. Jans, J. Hoigne, Activated carbon and carbon black catalyzed transformation of aqueous ozone into OH radicals, Ozone Sci. Eng., 20 (1998) 67–90.
  43. P.C.C. Faria, J.J.M. Orfao, M.F.R. Pereira, Mineralisation of coloured aqueous solutions by ozonation in the presence of activated carbon, Water Res., 39 (2005) 1461–1470.
  44. M. Muthukumar, D. Sargunamani, N. Selvakumar, Statistical analysis of the effect of aromatic, azo and sulphonic acid groups on decoloration of acid dye effluents using advanced oxidation processes, Dyes Pigm., 65 (2005) 151–158.
  45. J. Staehelin, J. Hoigne, Decomposition of ozone inwater: rate of initiation by hydroxide ions and hydrogen peroxide, Environ. Sci. Technol., 16 (1982) 676–681.
  46. H. Lee, M. Shoda, Removal of COD and color from livestock wastewater by the Fenton method, J. Hazard. Mater., 153 (2008) 1314–1319.
  47. F.J. Beltran, J.F. Garcia-Araya, P. Alvarez, Integration of continuous biological and chemical (ozone) treatment of domestic wastewater: Biodegradation and post ozonation, J. Chem. Technol. Biotechnol., 74 (1999) 877–883.
  48. I.A. Balcıoglu, M. Otker, Treatment of pharmaceutical wastewater containing antibiotics by O3 and O3/H2O2 processes, Chemosphere, 50 (2003) 85–95.
  49. S. Chatterjee, A. Kumar, S. Basu, S. Dutta, Application of response surface methodology for methylene blue dye removal from aqueous solution using low cost adsorbent, Chem. Eng. J., 181 (2012) 289–299.
  50. N. Kannan, M.M. Sundaram, Kinetics and mechanism of removal of methylene blue by adsorption on various carbons— a comparative study, Dyes Pigm., 51(1) (2001) 25–40.
  51. T. Merle, J.S. Pic, M.H. Manero, S. Mathe, H. Debellefotaine, Influence of activated carbon on the kinetics and mechanism of aromatic molecule ozonation, J. Catal., Today. 151 (2010) 166–172.
  52. M.R.H. Mas-Haris, K. Sathasivam, The removal of methyl red from aqueous solution using banana pseudo-stem fibers, Am. J. Appl. Sci., 6 (2009) 1690–1700.
  53. Y. Liu, Y. Guo, W. Gao, Z. Wang, Y. Ma, Z. Wang, Simultaneous preparation of silica and activated carbon from rice husk ash, J. Clean. Prod., 32 (2012) 204–209.
  54. A. Kumar, B. Sengupta, D. Dasgupta, T. Mandal, S. Datta, Recovery of value added products from rice husk ash to explore an economic way for recycle and reuse of agricultural waste, Rev. Env. Sci. Technol., 15(1) (2016) 47–65.