References
- M.K. Ghose, S. Roy, Lysimeter test of coal plant effluent disposal
to land in India, J. Air Waste Manage. Assoc., 49 (1999)
1245–1259.
- E.E. Chang, H.J. Hsing, P.C. Chiang, M.Y. Chen, J.Y. Shyng, The
chemical and biological characteristics of coke-oven wastewater
by ozonation, J. Hazard. Mater., 156 (2008) 560–567.
- W.A. Bone, Coal and its scientific uses, FRS. 1980.
- G. Shao, J. Li, W. Wang, Z. He, S. Li, Desulfurization and simultaneous
treatment of coke-oven wastewater by pulsed corona
discharge, J. Electrostat., 62(1) (2004) 1–13.
- Pollution Prevention and Abatement Handbook, World Bank
Group. July 1998.
- B.R. Lim, H.Y. Hu, K. Fujie, Biological degradation and chemical
oxidation characteristics of coke-oven wastewater, Water
Air Soil Pollut., 146(1–4) (2003) 23–33.
- M. Zhang, J.H. Tay, Y. Qian, X.S. Gu, Coke plant wastewater
treatment by fixed biofilm system for COD and NH3–N
removal, Water Res., 32(2) (1998) 519–527.
- J.L. Wang, X.C. Quan, L.B. Wu, Y. Qian, W. Hegemann, Bioaugmentation
as a tool to enhance the removal of refractory
compound in coke plant wastewater, Process Biochem., 38(5)
(2002) 777–781.
- X. Zhu, J. Ni, P. Lai, Advanced treatment of biologically pretreated
coking wastewater by electrochemical oxidation using
boron-doped diamond electrodes, Water Res., 43 (2009) 4347–
4355.
- M.H. Zhang, Q.L. Zhao, X. Bai, Z.F. Ye, Adsorption of organic
pollutants from coking wastewater by activated coke., Colloids
Surf. A., 362 (2010) 140–146.
- P. Lai, H.Z. Zhao, C. Wang, J. Ni, Advanced treatment of coking
wastewater by coagulation and zero-valent iron processes,
J. Hazard. Mater., 147 (2007) 232–239.
- P. Lai, H. Zhao, Z. Ye, J. Ni, Assessing the effectiveness of treating
coking effluents using anaerobic and aerobic biofilms, Process
Biochem., 43 (2008) 229–237.
- J. Dasgupta, A. Kumar, D.D Mandal, T. Mandal, S. Datta,
Removal of phenol from aqueous solutions using adsorbents
derived from low-cost agro-residues, Desal. Water Treat., 57
(2016) 1–25.
- K. Mielczarek, J. Bohdziewicz, M. Wlodarczyk-Makula, M.
Smol, Modeling performance of commercial membranes in the
low-pressure filtration coking wastewater treatment based on
mathematical filtration model, Desal. Water Treat., 52(19–21)
(2014) 3743–3752.
- M. Włodarczyk-Makuła, E. Wisniowska, A. Turek, A. Obstoj,
Removal of PAHs from coking wastewater during photodegradation
process, Desal. Water Treat., 57 (2016) 1262–1272.
- K. Mielczarek, J. Bohdziewicz, M. Włodarczyk-Makuła, M.
Smol, Comparison of post-process coke wastewater treatment
effectiveness in integrated and hybrid systems that combine
coagulation, ultrafiltration, and reverse osmosis, Desal. Water
Treat., 52 (2014) 3879–3888.
- P. Hema, P. Suneel, Evaluation of physical stability and leachability
of Portland Pozzolona Cement (PPC) solidified chemical
sludge generated from textile wastewater treatment plants,
J. Hazard. Mater., 207–208 (2012) 56–64.
- H. Kusic, N. Koprivanac, A.L. Bozic, Minimization of organic
pollutant content in aqueous solution by means of AOPs,
UV and ozone based technologies, J. Chem. Eng., 123 (2006)
127–137.
- D.M. Bila, A.F. Montalvao, A.C. Silva, M. Dezotti, Ozonation of
landfill leachate: evaluation of toxicity removal and biodegrability
improvement, J. Hazard. Mater., 117 (2005) 235–242.
- R.G. Rice, Applications of ozone for industrial wastewater
treatment – a review, Ozone Sci. Eng., 18 (1997) 477–515.
- A. Turek, M. Włodarczyk-Makuła, Removal of priority PAHs
from coking wastewater, CEER. 10 (2013) 139–147.
- A. Turek, M. Włodarczyk-Makuła, Oxidation of low molecular
weight PAHs in industrial wastewater, LAB Research Laboratory
Apparatus. 17 (2012) 14–17.
- K.C. Pillai, T.O. Kwon, I.I.S. Moon, Degradation of wastewater
from terephthalic acid manufacturing process by ozonation
catalyzed with Fe2+, H2O2 and UV light: direct versus indirect
ozonation reactions, J. Appl. Catal. B – Environ., 91 (2009)
319–
328.
- N. Kishimoto, Y. Morita, H. Tsuno, T. Oomura, H. Mizutani,
Advanced oxidation effect of ozonation combined with electrolysis,
J. Water Res., 39 (2005) 4661–4672.
- P. Xu, M. Janex, P. Savoye, A. Cockx, V. Lazarova, Wastewater
disinfection by ozone: main parameters for process design,
Water Res., 36 (2002) 1043–1055.
- F.J. Rivas, F. Beltran, O. Gimeno, B. Acedo, F. Carvalho, Stabilized
leachates: ozone activated carbon treatment and kinetics,
J. Water Res., 37 (2003) 4823–4834.
- A. Kumar, S. Singha, B. Sengupta, D. Dasgupta, S. Datta, T.
Mandal, Intensive insight into the enhanced utilization of rice
husk ash: Abatement of rice mill wastewater and recovery of
silica as a value added product, Ecol. Eng., 91 (2016) 270–281.
- Standard Methods for the Examination of Water and Waste
water (20th ed), American Public Health Association, Washington,
DC, USA (1998).
- S. Salem, A. Amr, H.A. Aziz, M.N. Adlan, Optimization of stabilized
leachate treatment using ozone/persulfate in the advanced
oxidation process, Waste Manage., 33 (2013) 1434–1441.
- K. Ravikumar, K.S. Krishnan, S. Ramalingam, K. Balu, Optimization
of process variables by the application of response
surface methodology for dye removal using a novel adsorbent,
Dyes Pigm., 72 (2007) 66–74.
- K. Ravikumar, S. Ramalingam, S. Krishnan, K. Balu, Application
of response surface methodology to optimize the process
variables for reactive red and acid brown dye removal using a
novel adsorbent, Dyes Pigm., 70 (2006) 18–26.
- S. Mandal, B. Bhunia, A. Kumar, D. Dasgupta, T. Mandal, S.
Datta, P. Bhattacharya, A statistical approach for optimization
of media components for phenol degradation by Alcaligenesfaecalis
using Plackett-Burman and response surface methodology,
Desal. Water Treat., 51(31–33) (2013) 1–12.
- C. Chen, H. Chen, X Guo, S. Guo, G. Yan, Advanced ozone
treatment of heavy oil refining wastewater by activated carbon
supported iron oxide, J. Ind. Eng. Chem., 20 (2014) 2782–2791.
- J.N. Sahu, J. Acharya, B.C. Meikap, Response surface modeling
and optimization of chromium(VI) removal from aqueous
solution using tamarind wood activated carbon in batch process,
J. Hazard. Mater., 172 (2009) 818–825.
- Y.S. Ho, G. McKay, Pseudo-second order model for adsorption
processes, Process Biochem., 34 (1999) 451–465.
- Design-Expert 6 User’s Guide, Section 12: Statistical Details:
Analysis. 2000.
- S. Salem, A. Amr, H.A. Aziz, M.N. Adlan, Optimization
of stabilized leachate treatment using ozone/persulfate in
the advanced oxidation process, Waste Manage., 33 (2013)
1434–1441.
- X. Jing, Y. Cao, X. Zhang, D. Wang, X. Wu, H. Xu, Biosorption of
Cr (VI) from simulated wastewater using a cationic surfactant
modified spent mushroom, Desalination, 269 (2011) 120–127.
- S. Bajpai, S.K. Gupta, A. Dey, M.K. Jha, V. Bajpai, S. Joshi, A.
Gupta, Application of central composite design approach
for removal of chromium (VI) from aqueous solution using
weakly anionic resin: Modeling, optimization, and study of
interactive variables, J. Hazard. Mater., 227–228 (2012) 436–
444.
- T.A. Kurniawan, W.H. Lo, Removal of refractory compounds
from stabilized landfill leachate using an integrated H2O2 oxidation
and granular activated carbon (GAC) adsorption treatment,
J. Water Res., 43 (2009) 4079–4091.
- F.J. Beltran, J. Rivas, P. Alvarez, R. Montero-de-Espinosa, Kinetics
of heterogeneous catalytic ozone decomposition in water
on an activated carbon, Ozone Sci. Eng., 24 (2002) 227–237.
- U. Jans, J. Hoigne, Activated carbon and carbon black catalyzed
transformation of aqueous ozone into OH radicals, Ozone Sci.
Eng., 20 (1998) 67–90.
- P.C.C. Faria, J.J.M. Orfao, M.F.R. Pereira, Mineralisation of
coloured aqueous solutions by ozonation in the presence of
activated carbon, Water Res., 39 (2005) 1461–1470.
- M. Muthukumar, D. Sargunamani, N. Selvakumar, Statistical
analysis of the effect of aromatic, azo and sulphonic acid
groups on decoloration of acid dye effluents using advanced
oxidation processes, Dyes Pigm., 65 (2005) 151–158.
- J. Staehelin, J. Hoigne, Decomposition of ozone inwater: rate of
initiation by hydroxide ions and hydrogen peroxide, Environ.
Sci. Technol., 16 (1982) 676–681.
- H. Lee, M. Shoda, Removal of COD and color from livestock
wastewater by the Fenton method, J. Hazard. Mater., 153 (2008)
1314–1319.
- F.J. Beltran, J.F. Garcia-Araya, P. Alvarez, Integration of continuous
biological and chemical (ozone) treatment of domestic
wastewater: Biodegradation and post ozonation, J. Chem.
Technol. Biotechnol., 74 (1999) 877–883.
- I.A. Balcıoglu, M. Otker, Treatment of pharmaceutical wastewater
containing antibiotics by O3 and O3/H2O2 processes,
Chemosphere, 50 (2003) 85–95.
- S. Chatterjee, A. Kumar, S. Basu, S. Dutta, Application of
response surface methodology for methylene blue dye removal
from aqueous solution using low cost adsorbent, Chem. Eng. J.,
181 (2012) 289–299.
- N. Kannan, M.M. Sundaram, Kinetics and mechanism of
removal of methylene blue by adsorption on various carbons—
a comparative study, Dyes Pigm., 51(1) (2001) 25–40.
- T. Merle, J.S. Pic, M.H. Manero, S. Mathe, H. Debellefotaine,
Influence of activated carbon on the kinetics and mechanism
of aromatic molecule ozonation, J. Catal., Today. 151 (2010)
166–172.
- M.R.H. Mas-Haris, K. Sathasivam, The removal of methyl red
from aqueous solution using banana pseudo-stem fibers, Am.
J. Appl. Sci., 6 (2009) 1690–1700.
- Y. Liu, Y. Guo, W. Gao, Z. Wang, Y. Ma, Z. Wang, Simultaneous
preparation of silica and activated carbon from rice husk ash, J.
Clean. Prod., 32 (2012) 204–209.
- A. Kumar, B. Sengupta, D. Dasgupta, T. Mandal, S. Datta,
Recovery of value added products from rice husk ash to
explore an economic way for recycle and reuse of agricultural
waste, Rev. Env. Sci. Technol., 15(1) (2016) 47–65.