References

  1. S.M.W. Reddy, R.I. McDonald, A.S. Maas, A. Rogers, E.H. Girvetz, J. North, J. Molnar, T. Finley, G. Leathers, J.L. DiMuro, Finding solutions to water scarcity: Incorporating ecosystem service values into business planning at The Dow Chemical Company’s Freeport, TX facility. Ecosystem Services, 12 (2015) 94–107.
  2. M.F. Hamoda, Desalination and water resource management in Kuwait. Desalination, 138(1) (2001) 385–393.
  3. D.İ. Çifçi, S. Meriç, A review on pumice for water and wastewater treatment. Desal. Water Treat., 57(39) (2016) 18131–18143.
  4. M.G. Salim, Selection of groundwater sites in Egypt, using geographic information systems, for desalination by solar energy in order to reduce greenhouse gases. J. Adv. Res., 3(1) (2012) 11–19.
  5. L.F. Greenlee, D.F. Lawler, B.D. Freeman, B. Marrot , P. Moulin, Reverse osmosis desalination: water sources, technology, and today’s challenges. Water Res., 43(9) (2009) 2317–2348.
  6. C. Fritzmann, J. Löwenberg, T. Wintgens, T. Melin, State-of-the-art of reverse osmosis desalination. Desalination, 216 (2007) 1–76.
  7. D.J. Woodcock, I.M. White, The application of pelton type impulse turbines for energy recovery on sea water reverse osmosis systems. Desalination, 39 (1981) 447–458.
  8. A. Malek, M. Hawlader, J. Ho, Design and economics of RO seawater desalination. Desalination, 105 (1996) 245–261.
  9. A. Ahmed, I. Moch, Seawater reverse osmosis a study in use. Desalination, 82 (1991) xx-xxi.
  10. Y. Kamiyama, N. Yoshioka, K. Matsui, K. Nakagome, New thin-film composite reverse osmosis membranes and spiral wound modules. Desalination, 51 (1984) 79–92.
  11. D.F. Sanders, Z.P. Smith, R. Guo, L.M. Robeson, J.E. McGrath, D.R. Paul, B.D. Freeman, Energy-efficient polymeric gas separation membranes for a sustainable future: A review. Polymer, 54(18) (2013) 4729–4761.
  12. L. Huang, J.R. McCutcheon, Impact of support layer pore size on performance of thin film composite membranes for forward osmosis. J. Membr. Sci., 483 (2015) 25–33.
  13. S. Mitrouli, A. Karabelas, N. Isaias, Polyamide active layers of low pressure RO membranes: data on spatial performance non-uniformity and degradation by hypochlorite solutions. Desalination, 260 (2010) 91–100.
  14. J.E. Cadotte, Interfacially synthesized reverse osmosis membrane, 1981, Google Patents.
  15. R.W. Baker, Membranes and Modules, in Membrane Technology and Applications, 2004, John Wiley & Sons, Ltd. p. 89–160.
  16. J. Schwinge, P.R. Neal, D.E. Wiley, D.F. Fletcher, A.G. Fane, Spiral wound modules and spacers: review and analysis. J. Membr. Sci., 242 (2004) 129–153.
  17. Z. Yong, Y. Sanchuan, L. Meihong, G. Congjie, Polyamide thin film composite membrane prepared from m-phenylenediamine and m-phenylenediamine-5-sulfonic acid. J. Membr. Sci., 270 (2006) 162–168.
  18. A.K. Ghosh, B. Jeong, X. Huang, E.M.V. Hoek, Impacts of reaction and curing conditions on polyamide composite reverse osmosis membrane properties. J. Membr. Sci., 311 (2008) 34–45.
  19. M. Liu, S. Yu, J. Tao, C. Gao, Preparation, structure characteristics and separation properties of thin-film composite polyamideurethane seawater reverse osmosis membrane. J. Membr. Sci., 325 (2008) 947–956.
  20. S. Yu, M. Liu, X. Liu, C. Gao, Performance enhancement in interfacially synthesized thin-film composite polyamideurethane reverse osmosis membrane for seawater desalination. J. Membr. Sci., 342 (2009) 313–320.
  21. . M.E.A. Ali, L. Wang, X. Wang, X. Feng, Thin film composite membranes embedded with graphene oxide for water desalination. Desalination, 386 (2016) 67–76.
  22. M.E.A. Ali, F.M. Hassan, X. Feng, Improving the performance of TFC membranes via chelation and surface reaction: applications in water desalination. J. Mater. Chem. A, 4(17) (2016) 6620–6629.
  23. Y.-N. Kwon, J.O. Leckie, Hypochlorite degradation of crosslinked polyamide membranes: II. Changes in hydrogen bonding behavior and performance. J. Membr. Sci., 282 (2006) 456–464.
  24. H. Shawky, Performance of aromatic polyamide RO membranes synthesized by interfacial polycondensation process in a water–tetrahydrofuran system. J. Membr. Sci., 339 (2009) 209–214.
  25. . L. Shi, S.R. Chou, R. Wang, W.X. Fang, C.Y. Tang, A.G. Fane, Effect of substrate structure on the performance of thinfilm composite forward osmosis hollow fiber membranes. J. Membr. Sci., 382 (2011) 116–123.
  26. L. Yang, S.L. Phua, J.K.H. Teo, C.L. Toh, S.K. Lau, J. Ma, X. Lu, A biomimetic approach to enhancing interfacial interactions: polydopamine-coated clay as reinforcement for epoxy resin. ACS Appl. Mater. Interf., 3(8) (2011) 3026–3032.
  27. G. Han, S. Zhang, X. Li, N. Widjojo, T. Chung, Thin film composite forward osmosis membranes based on polydopamine modified polysulfone substrates with enhancements in both water flux and salt rejection. Chem. Eng. Sci., 80 (2012) 219–231.
  28. P.G. Ingole, K. Singh, H.C. Bajaj, Enantioselective polymeric composite membrane for optical resolution of racemic mixtures of α-amino acids. Separ. Sci. Technol., 46(12) (2011) 1898–1907.
  29. P.G. Ingole, K. Singh, H.C. Bajaj, Enantioselective permeation of α-amino acid isomers through polymer membrane containing chiral metal–Schiff base complexes. Desalination, 281 (2011) 413–421.
  30. J.T. Arena, B. McCloskey, B.D. Freeman, J.R. McCutcheon, Surface modification of thin film composite membrane support layers with polydopamine: enabling use of reverse osmosis membranes in pressure retarded osmosis. J. Membr. Sci., 375 (2011) 55–62.
  31. H. Lee, S.M. Dellatore, W.M. Miller, P.B. Messersmith, Musselinspired surface chemistry for multifunctional coatings. Science, 318(5849) (2007) 426–430.
  32. S. Zulfiqar, M.I. Sarwar, Soluble aromatic polyamide bearing sulfone linkages: synthesis and characterization. High Perform. Polym., 21(1) (2009) 3–15.
  33. Y.F. Liu, Q.C. Yu, Y.H. Wu, Preparation and proton conductivity of composite membranes based on sulfonated poly (phenylene oxide) and benzimidazole. Electrochim. Acta, 52(28) (2007) 8133–8137.
  34. S. Villar-Rodil, J.I. Paredes, A. Martínez-Alonso, J.M.D. Tascón, Atomic force microscopy and infrared spectroscopy studies of the thermal degradation of Nomex aramid fibers. Chem. Mater., 13(11) (2001) 4297–4304.
  35. M.E. Abdelfattah, Chemistry and Desalination of Groundwater in the Area between Quseir and Safaga, Eastern Desert, Egypt, in Chemistry 2014, Al-Azhar: Egypt. p. 203.