References

  1. Y. Yoon, R.M. Lueptow, Removal of organic contaminants by RO and NF membranes, J. Membr. Sci., 261 (1–2) (2005) 76–86.
  2. K.M. Sassi, I.M. Mujtaba, Optimal operation of RO system with daily variation of freshwater demand and seawater temperature, Comp. Chem. Eng., 59 (2013) 101–110.
  3. M. Barello, D. Manca, R. Patel, I.M. Mujtaba, Operation and modeling of RO desalination process in batch mode, Comp. Chem. Eng., 83 (2015) 139–156.
  4. M.A. Al-Obaidi, I.M. Mujtaba, Steady state and dynamic modeling of spiral wound wastewate reverse osmosis process, Comp. Chem. Eng., 90 (2016) 278–299.
  5. H.K. Lonsdale, U. Merten, R.L. Riley, Transport properties of cellulose acetate osmotic membranes, J. Appl. Polym. Sci., 9 (4) (1965) 1341–1362.
  6. K.S. Spiegler, O. Kedem, Thermodynamics of hyperfiltration (reverse osmosis): criteria for efficient membranes, Desalination, 1 (1966) 311–326.
  7. E.A. Mason, H.K. Lonsdale, Statistical-mechanical theory of membrane transport, J. Membr. Sci., 51 (1990) 1–81.
  8. Z.V.P. Murthy, S.K. Gupta, Thin film composite polyamide membrane parameters estimation for phenol-water system by reverse osmosis, Separ. Sci. Technol., 33 (16) (1998) 2541–2557.
  9. S. Sobana, R.C. Panda, Review on modelling and control of desalination system using reverse osmosis, Rev. Environ. Sci. Biotechnol., 10 (2) (2011) 139–150.
  10. O. Kedem, A. Katchalsky, Thermodynamic analysis of the permeability of biological membranes to non-electrolytes, Biochim. Biophys. Acta., 27 (1958) 229–246.
  11. K.S. Spiegler, O. Kedem, Thermodynamics of hyperfiltration (reverse osmosis): criteria for efficient membranes, Desalination, 1 (1966) 311–326.
  12. W.R. Galey, J.T. Bruggen, The coupling of solute fluxes in membranes, J. Gen. Physiol., 55 (2) (1970) 220–242.
  13. W. Pusch, In: Proc. 7th International Symposium on Fresh Water from the Sea, 2 (1980) 207.
  14. M. Perry, C. Linder, Intermediate reverse osmosis ultrafiltration (RO UF) membranes for concentration and desalting of low molecular weight organic solutes, Desalination, 71 (1989) 233–245.
  15. P. Schirg, F. Widmer, Characterisation of nanofiltration membranes for the separation of aqueous dye-salt solutions, Desalination, 89 (1992) 89–107.
  16. D.V. Gauwbergen J. Baeyens, Modelling reverse osmosis by irreversible thermodynamics, Separ. Purif. Technol., 13 (2) (1998) 117–128.
  17. A.L. Ahmad, M.F. Chong, S. Bhatia, Mathematical modeling and simulation of the multiple solutes system for nanofiltration process, J. Membr. Sci., 253 (2005) 103–115.
  18. T. Fujioka, S.J. Khan, J.A. Mcdonald, A. Roux, Y. Poussade, J.E. Drewes, L.D. Nghiem, Modelling the rejection of N-nitrosamines by a spiral-wound reverse osmosis system: Mathematical model development and validation, J. Membr. Sci., 454, (2014) 212–219.
  19. C. Lee, Y. Chen, G. Wang, A dynamic simulation model of reverse osmosis desalination systems, The 5th International Symposium on Design, Operation and Control of Chemical Processes, PSE ASIA, Singapore (2010).
  20. G. Srinivasan, S. Sundaramoorthy, D.V.R. Murthy, Spiral wound reverse osmosis membranes for the recovery of phenol compounds-experimental and parameter estimation studies, Amer. J. Eng. Appl. Sci., 3 (1) (2010) 31–36.
  21. S. Senthilmurugan, A. Ahluwalia, S.K. Gupta, Modeling of a spiral-wound module and estimation of model parameters using numerical techniques, Desalination, 173 (2005) 269–286.
  22. Process System Enterprise Ltd., gPROMS Introductory User Guide. London: Process System Enterprise Ltd., 2001.
  23. A.T. Jarullah, I.M. Mujtaba, A.S. Wood, Kinetic parameter estimation and simulation of trickle-bed reactor for hydrodesulfurization of crude oil, Chem. Eng. Sci., 66 (5) (2011) 859–871.
  24. S. Sundaramoorthy, G. Srinivasan, D.V.R. Murthy, An analytical model for spiral wound reverse osmosis membrane modules: Part II — Experimental validation, Desalination, 277 (2011) 257–264.
  25. P.C. Wankat, Rate-controlled separations. 1st ed., Springer, 1990, 873 pp.