References

  1. H. Zhou and D.W. Smith, Advanced technologies in water and wastewater treatment. J. Civil Eng., 28 (2001) 49-66.
  2. S. Esplugas et al., Comparison of different advanced oxidation processes for phenol degradation. Water Res., 36 (2002) 1034-1042.
  3. K.H. Barbara, B.Z. Maria and N. Jacek, Catalytic ozonation and methods of enhancing molecular ozone reactions in water treatment. Environmental, 46 (2003) 639-669.
  4. G. Franco, Radical and non-radical chemistry of the Fenton-like systems in the presence of organic substrates. J. Mol. Catal., 171 (2001) 1-22.
  5. J. Kochany and J.R. Bolton, Mechanism of photodegradation of aqueous organic pollutants. 2. Measurement of the primary rate constants for reaction of OH. radicals with benzene and some halobenzenes using an EPR spin-trapping method following the photolysis of H2O2. Environ. Sci. Technol., 26 (1992) 262-265.
  6. M. Kitis, C.D. Adams and G.T. Daigger, The effects of Fenton’s reagent pretreatment on the biodegradability of nonionic surfactants. Water Res., 33 (1999) 2561-2568.
  7. W. Qiquan and L. Annt, Kinetic model and optimization of 2,4-D degradation by anodic Fenton treatment. Environ. Sci. Technol., 35 (2001) 4509-4514.
  8. T.D. Waite, Challenges and opportunities in the use of iron in water and wastewater treatment. Environ. Sci. Biotechnol., 1 (2002) 9-15.
  9. K. Namgoo, S. Dong, and Y. Jeyong, Kinetic modeling of Fenton oxidation of phenol and monochlorophenols. Chemosphere, 47 (2002) 915-924.
  10. E. Neyens and J. Baeyens, A review of classic Fenton’s peroxidation as an advanced oxidation technique. J. Hazard. Mater., B98 (2003) 33-50.
  11. J. Zazo et al., Chemical pathway and kinetics of phenol oxidation by Fenton’s reagent. Environ. Sci. Technol., 39 (2005) 9295-9302.
  12. R. Maciel et al., Phenol removal from high salinity effluents using Fenton’s reagent and photo-Fenton reactions. Chemosphere, 57 (2004) 711-719.
  13. S.M. Arnold, W.J. Hickey and R.F. Harris, Degradation of atrazine by Fenton’s reagent: Condition optimization and product quantification. Environ. Sci. Technol., 29 (8) (1995) 2083-2089.
  14. Y.W. Kang and K.Y. Hwang, Effects of reaction conditions on the oxidation efficiency in the Fenton process. Water Res., 34 (10) (2000) 2786-2790.
  15. S.H. Lin and C.C. Lo, Fenton process for treatment of desizing wastewater. Water Res., 31 (1997) 2050-2056.
  16. C. Walling and S. Kato, The oxidation of alcohols by Fenton’s reagent: The effect of copper ion. J. Am. Chem. Soc., 93 (1971) 4275-4281.
  17. R.J. Bidga, Consider Fenton’s chemistry for wastewater treatment. Chem. Eng. Prog., 91 (1995) 62-66.
  18. T. Cla´udia et al., Optimization of Fenton’s oxidation of chemical laboratory wastewaters using the response surface methodology. J. Environ. Manage., 80 (2006) 66-74.
  19. D.F. Samuwl and M.A. Osman, Chemistry of Water Treatment, 2nd ed., Lewis Publishers, 1998.
  20. G. Anett and D.K. Frank, Interaction of adsorption and catalytic reactions in water decontamination processes Part I. Oxidation of organic contaminants with hydrogen peroxide catalyzed by activated carbon. Environmental, 58 (2005) 9-18.
  21. M. Scholz and R.J. Martin, Ecological equilibrium on biological activated carbon. Water Res., 31 (12) (1997) 2959-2968.
  22. D.M. Ruthven, Principles of Adsorption and Adsorption Processes, John Wiley, New York, 1984.
  23. Z. Huiping, Regeneration of exhausted activated carbon by electrochemical method. Chem. Eng. J., 85 (2002) 81-85.
  24. K.J. Ayoub and R.M. Narbaitz, Electrochemical reactivation of granular activated carbon: Effect of electrolyte mixing. J. Environ. Eng., (2005) 443-449.
  25. A. Bach, G. Zelmanov and R. Semiat, Cold catalytic recovery of loaded activated carbon using iron oxide-based nanoparticles. Water Res., 42 (2008) 163-168.