References
- J. Farquhar, B.A. Wing, Multiple sulfur isotopes and the evolution
of the atmosphere, Earth Planet. Sci. Lett., 213 (2003) 1–13.
- J. Bhattacharya, M. Islam, Y.W. Cheong, Microbial growth and
action: Implications for passive bioremediation of acid mine
drainage, Mine Water Environ., 25 (2006) 233–240.
- T.W. Hao, P.Y. Xiang, H.R. Mackey, K. Chi, H. Lu, H. Chui, C.M.
Mark, M.C. van Loosdrecht, G.H. Chen, A review of biological
sulfate conversions in wastewater treatment, Water Res., 65
(2014) 1–21.
- O.O. Oyekola, R.P. van Hille, S.T.L. Harrison, Effect of sulphate
concentration on the community structure and activity of sulphate
reducing bacteria, Adv. Mat. Res., 20–21 (2007) 513–515.
- A. Roy, B.K. Das, J. Bhattacharya, Development and validation
of a spectrophotometric method to measure sulfate concentrations
in mine water without Interference, Mine Water Environ.,
30 (2011) 169–174.
- A. Sarti, M. Zaiat, Anaerobic treatment of sulfate-rich wastewater
in an anaerobic sequential batch reactor (AnSBR) using
butanol as the carbon source, J. Environ. Manage., 92 (2011)
1537–1541.
- M. Martins, M.L. Faleiro, R.J. Barros, A.R. Verissimo, M.A.
Barreiros, M.C. Costa, Characterization and activity studies
of highly heavy metal resistant sulphate-reducing bacteria to
be used in acid mine drainage decontamination, J. Hazard.
Mater., 166 (2009) 706–713.
- A. Sinharoy, N.A. Manikandan, K. Pakshirajan, A novel biological
sulfate reduction method using hydrogenogenic carboxydotrophic
mesophilic bacteria, Bioresour. Technol., 192
(2015) 494–500.
- M.G.M. Moghanloo, E. Fatehifar, S. Saedy, Z. Aghaeifar, H.
Abbasnezhad, Biological oxidation of hydrogen sulfide in mineral
media using a biofilm airlift suspension reactor, Bioresour.
Technol., 101 (2010) 8330–8335.
- K. Tang, V. Baskaran, M. Nemati, Bacteria of the sulphur cycle:
An overview of microbiology, biokinetics and their role in
petroleum and mining industries, Biochem. Eng. J., 44 (2009)
73–94.
- O.O. Oyekola, R.P. van Hille, S.T.L. Harrison, Kinetic analysis
of biological sulphate reduction using lactate as carbon source
and electron donor: Effect of sulphate concentration, Chem.
Eng. Sci., 65 (2010) 4771–4781.
- J. Cao, G. Zhang, Z.S. Mao, Y. Li, Z. Fang, C. Yang, Influence of
electron donors on the growth and activity of sulfate-reducing
bacteria, Int. J. Miner. Process., 106–109 (2012) 58–64.
- S. Moosa, M. Nemati, S.T.L. Harrison, A kinetic study on
anaerobic reduction of sulphate, Part I: Effect of sulphate concentration,
Chem. Eng. Sci., 57 (2002) 2773–2780.
- APHA, Standard methods for the examination of water and
wastewater, 21st edition, American Public Health Association,
American Water Works Association, Water Environment Federation,
Washington, 2005.
- L.A. Bernardez, L.R.P.d.A. Lima, Improved method for enumerating
sulfate-reducing bacteria using optical density,
MethodsX, 2 (2015) 249–255.
- Y.A. Warren, D.M. Citron, C.V. Merriam, E.J.C. Goldstein,
Biochemical differentiation and comparison of Desulfovibrio
Species and other phenotypically similar genera, J. Clin.
Microbiol., 43 (2005) 4041–4045.
- D.J. Brenner, N.R. Krieg, Bergey’s Manual of Systematic Bacteriology:
Volume Two: The Proteobacteria, Part 3, 2nd ed.,
Springer, 2004.
- W. Liamleam, A.P. Annachhatre, Electron donors for biological
sulfate reduction, Biotechnol. Adv., 25 (2007) 452–463.
- S. Rajesh, K. Anil, K. Anita, K. Rajender, Y. Neeru, N.R. Bishnoi,
R.K. Lohchab, Removal of sulphate, COD and Cr(VI) in
simulated and real wastewater by sulphate reducing bacteria
enrichment in small bioreactor and FTIR study, Bioresour.
Technol., 102 (2011) 677–682.
- S. Moosa, S.T.L. Harrison, Product inhibition by sulphide species
on biological sulphate reduction for the treatment of acid
mine drainage, Hydrometallurgy, 83 (2006) 214–222.
- I. Sanchez-Andrea, J.L. Sanz, M.F.M. Bijmans, A.J.M. Stama,
Sulfate reduction at low pH to remediate acid mine drainage, J.
Hazard. Mater., 269 (2014) 98–109.
- C. Garcia, D.A. Moreno, A. Ballester, M.L. Blazquez, F. Gonzalez,
Bioremediation of an industrial acid mine water by
metal-tolerant sulphate-reducing bacteria, Min. Eng., 14 (2001)
997–1008.
- B. Icgen, S. Harrison, Exposure to sulfide causes populations
shifts in sulfate-reducing consortia, Res Microbiol., 157 (2006)
784–791.
- A.Z. Sulaiman, H.E.N. Muftah, A.H. Huda, Sulfate inhibition
effect on sulfate reducing bacteria, J. Biochem. Tech., 1 (2008)
39–44.
- S. Moosa, M. Nemati, S.T.L. Harrison, A kinetic study on
anaerobic reduction of sulfate, Part II: incorporation of temperature
effects in the kinetic model, Chem. Eng. Sci., 60 (2005)
3517–3524.
- S. Dev, S. Roy, D. Das, J. Bhattacharya, Improvement of biological
sulfate reduction by supplementation of nitrogen rich
extract prepared from organic marine wastes, Int. Biodeter.
Biodegr., 104 (2015) 264–273.
- A. Velasco, M. Ramirez, T. Volke-Sepulveda, A. Gonzalez-Sanchez,
S. Revah, Evaluation of feed COD/sulfate ratio as a control
criterion for the biological hydrogen sulfide production
and lead precipitation, J. Hazard. Mater., 151 (2008) 407–413.
- V. O’Flaherty, T. Mahony, R. O’Kennedy, E. Colleran, Effect of
pH on growth kinetics and sulphide toxicity thresholds of a
range of methanogenic, syntrophic and sulphate-reducing
bacteria, Process Biochem., 33 (1998) 555–569.
- M.A.M. Reis, J.S. Almeida, P.C. Lemos, M.J.T. Carrondo, Effect
of hydrogen sulfide on growth of sulfate reducing bacteria,
Biotechnol. Bioeng., 40 (1992) 593–600.
- Z. Ye, W. Wang, Q. Yuan, H. Ye, Y. Sun, H. Zhang, X. Zeng,
Box-Behnken design for extraction optimization, characterization
and in vitro antioxidant activity of Cicer arietinum L. hull
polysaccharides, Carbohydr. Polym.,147 (2016) 354–364.