References

  1. R. Colin, Les perturabateurs endocriniens dans l’eau: Un jeu environnemental et sanitaire, L’eau, L’industrie, Les Nuisances, 319 (2009) 63–67.
  2. P. Fénichel, F. Brucker-Davis, Breast risk cancer and environmental endocrine disruptors, Gynécologie, Obs. Fertil., 36 (2008) 969–977.
  3. G. Ying, B. Williams, R. Kookana, Environmental fate of alkylphenols and alkylphenol ethoxylates - A review, Environ. Int., 28 (2002) 215–226.
  4. A. Careghini, A.F. Mastorgio, S. Saponaro, E. Sezenna, Bisphenol A, nonylphenols, benzophenones, and benzotriazoles in soils, groundwater, surface water, sediments, and food: a review, Environ. Sci. Pollut. Res., 22 (2014) 5711–5741.
  5. A. Colin, C. Bach, C. Rosin, J.F. Munoz, X. Dauchy, Is drinking water a major route of human exposure to alkylphenol and bisphenol contaminants in France?, Arch. Environ. Contam. Toxicol., 66 (2014) 86–99.
  6. A.A. Boyd-Boland, J.B. Pawliszyn, Solid-phase microextraction coupled with high-performance liquid chromatography for the determination of alkylphenol ethoxylate surfactants in water, Anal. Chem., 68 (1996) 1521–1529.
  7. E. Lundanes, T. Greibrokk, A.M. Kvistad, Determination of Alkylphenols in water samples by solid-phase extraction on to poly (styrene-divinylbenzene) and quantification by liquid chromatography with UV-detection, Chromatographia, 48 (1998) 707–713.
  8. W.H. Ding, S.H. Tzing, Analysis of nonylphenol polyethoxylates and their degradation products in river water and sewage effluent by gas chromatography-ion trap (tandem) mass spectrometry with electron impact and chemical ionization., J. Chromatogr. A, 824 (1998) 79–90.
  9. H.-J. Chen, Z.-H. Zhang, R. Cai, X. Chen, Y.-N. Liu, W. Rao, S.-Z. Yao, Molecularly imprinted electrochemical sensor based on amine group modified graphene covalently linked electrode for 4-nonylphenol detection, Talanta, 115 (2013) 222–227.
  10. G.A. Evtugyn, S.A. Eremin, R.P. Shaljamova, A.R. Ismagilova, H.C. Budnikov, Amperometric immunosensor for nonylphenol determination based on peroxidase indicating reaction, Biosens. Bioelectron., 22 (2006) 56–62.
  11. J. Huang, X. Zhang, S. Liu, Q. Lin, X. He, X. Xing, W. Lian, D. Tang, Development of molecularly imprinted electrochemical sensor with titanium oxide and gold nanomaterials enhanced technique for determination of 4-nonylphenol, Sensors Actuators B Chem., 152 (2011) 292–298.
  12. Q. Lu, W. Zhang, Z. Wang, G. Yu, Y. Yuan, Y. Zhou, A facile electrochemical sensor for nonylphenol determination based on the enhancement effect of cetyltrimethylammonium bromide, Sensors, 13 (2013) 758–768.
  13. Q. He, X. Dang, C. Hu, and S. Hu, The effect of cetyltrimethyl ammonium bromide on the electrochemical determination of thyroxine, Colloids Surf. B. Biointerfaces, 35 (2004) 93–98.
  14. C. Cachet-Vivier, V. Vivier, C.S. Cha, J.-Y. Nedelec, L.T. Yu, Electrochemistry of powder material studied by means of the cavity microelectrode (CME), Electrochim. Acta, 47 (2001) 181–189.
  15. Réseau UMEC, Microélectrode à cavité : Principe, développement et applications pour l’étude de la réactivité de matériaux insolubles, Publications d’Université de Saint-Etienne, 2009.
  16. D. Vega, L. Agüí, A. González-Cortés, P. Yáñez-Sedeño, J.M. Pingarrón, Electrochemical detection of phenolic estrogenic compounds at carbon nanotube-modified electrodes, Talanta, 71 (2007) 1031–1038.
  17. Q. Zheng, P. Yang, H. Xu, J. Liu, L. Jin, A simple and sensitive method for the determination of 4-n-octylphenol based on multi-walled carbon nanotubes modified glassy carbon electrode, J. Environ. Sci., 24 (2012) 1717–1722.
  18. H. Kuramitz, J. Saitoh, T. Hattori, S. Tanaka, Electrochemical removal of p-nonylphenol from dilute solutions using a carbon fiber anode, Water Res., 36 (2002) 3323–3329.
  19. E. Laviron, Voltammetric Methods for the Study of Adsorbed Species, In: Electroanalytical Chemistry, Bard, A.J., Ed.; Marcel Dekker: New York, 12, 1982.
  20. L. Zeng, A. Zhang, X. Zhu, C. Zhang, Y. Liang, J. Nan, Electrochemical determination of nonylphenol using differential pulse voltammetry based on a graphene–DNA-modified glassy carbon electrode, J. Electroanal. Chem., 703 (2013) 153–157.