References

  1. M.F. Awalludin, O. Sulaiman, R. Hashim, W.N.A.W. Nadhari, An overview of the oil palm industry in Malaysia and its waste utilization through thermochemical conversion, specifically via liquefaction, Renew. Sustain. Energy Rev., 50 (2015) 1469– 1484.
  2. G. Beaudry, C. Macklin, E. Roknich, L. Sears, M. Wiener, S.H. Gheewala, Greenhouse gas assessment of palm oil mill biorefinery in Thailand from a life cycle perspective, Biomass Convers. Biorefinery, (2017) 1–16.
  3. C. Hunsberger, A. Alonso-Fradejas, The discursive flexibility of ‘flex crops’: comparing oil palm and jatropha, J. Peasant Stud., 43 (2016) 225–250.
  4. R.R. Mohammed, Decolorisation of biologically treated palm oil mill effluent (POME) using adsorption technique, Int. J. Eng. Sci., 2 (2013) 1–11.
  5. R.R. Mohammed, M.R. Ketabchi, G. McKay, Combined magnetic field and adsorption process for treatment of biologically treated palm oil mill effluent (POME), Chem. Eng. J., 243 (2014) 31–42.
  6. X.J. Lee, L.Y. Lee, S. Gan, S. Thangalazhy-Gopakumar, H.K. Ng, Biochar potential evaluation of palm oil wastes through slow pyrolysis: Thermochemical characterization and pyrolytic kinetic studies, Bioresour. Technol., 236 (2017) 155–163.
  7. Y.H. Jung, I.J. Kim, J.-I. Han, I.-G. Choi, K.H. Kim, Aqueous ammonia pretreatment of oil palm empty fruit bunches for ethanol production, Bioresour. Technol., 102 (2011) 9806–9809.
  8. S. Thangalazhy-Gopakumar, W.M.A. Al-Nadheri, D. Jegarajan, J. Sahu, N. Mubarak, S. Nizamuddin, Utilization of palm oil sludge through pyrolysis for bio-oil and bio-char production, Bioresour. Technol., 178 (2015) 65–69.
  9. Y.H. Jung, I.J. Kim, J.J. Kim, K.K. Oh, J.-I. Han, I.-G. Choi, K.H. Kim, Ethanol production from oil palm trunks treated with aqueous ammonia and cellulase, Bioresour. Technol., 102 (2011) 7307–7312.
  10. C.I. Lim, W. Biswas, Y. Samyudia, Review of existing sustainability assessment methods for Malaysian palm oil production, Procedia CIRP, 26 (2015) 13–18.
  11. S.-H. Kong, S.-K. Loh, R.T. Bachmann, S.A. Rahim, J. Salimon, Biochar from oil palm biomass: A review of its potential and challenges, Renew. Sustain. Energy Rev., 39 (2014) 729–739.
  12. J. Sahu, J. Acharya, B. Sahoo, B. Meikap, Optimization of lead (II) sorption potential using developed activated carbon from tamarind wood with chemical activation by zinc chloride, Desal. Water Treat., 57 (2016) 2006–2017.
  13. R. Gao, J. Wang, Effects of pH and temperature on isotherm parameters of chlorophenols biosorption to anaerobic granular sludge, J. Hazard. Mater., 145 (2007) 398–403.
  14. A. Idris, I. Ahmed, M.A. Limin, Influence of lithium chloride, lithium bromide and lithium fluoride additives on performance of polyethersulfone membranes and its application in the treatment of palm oil mill effluent, Desalination, 250 (2010) 805–809.
  15. S. Parthasarathy, R.R. Mohammed, C.M. Fong, R.L. Gomes, S. Manickam, A novel hybrid approach of activated carbon and ultrasound cavitation for the intensification of palm oil mill effluent (POME) polishing, J. Cleaner Prod., 112, Part 1 (2016) 1218–1226.
  16. H. Wang, J.L. Wang, The cooperative electrochemical oxidation of chlorophenols in anode–cathode compartments, J. Hazard. Mater., 154 (2008) 44–50.
  17. S. Poulopoulos, M. Nikolaki, D. Karampetsos, C. Philippopoulos, Photochemical treatment of 2-chlorophenol aqueous solutions using ultraviolet radiation, hydrogen peroxide and photo-Fenton reaction, J. Hazard. Mater., 153 (2008) 582–587.
  18. A. Kuleyin, Removal of phenol and 4-chlorophenol by surfactant- modified natural zeolite, J. Hazard. Mater., 144 (2007) 307–315.
  19. B. Labaran, M. Vohra, Application of activated carbon produced from phosphoric acid-based chemical activation of oil fly ash for the removal of some charged aqueous phase dyes: role of surface charge, adsorption kinetics, and modeling, Desal. Water Treat., 57(34) (2016) 16034–16052.
  20. Z.A. AlOthman, M.A. Habila, R. Ali, A.A. Ghafar, M.S.E.-d. Hassouna, Valorization of two waste streams into activated carbon and studying its adsorption kinetics, equilibrium isotherms and thermodynamics for methylene blue removal, Arab. J. Chem., 7 (2014) 1148–1158.
  21. R.-L. Tseng, S.-K. Tseng, Characterization and use of high surface area activated carbons prepared from cane pith for liquid- phase adsorption, J. Hazard. Mater., 136 (2006) 671–680.
  22. P. Strachowski, M. Bystrzejewski, Comparative studies of sorption of phenolic compounds onto carbon-encapsulated iron nanoparticles, carbon nanotubes and activated carbon, Colloids Surf. A: Physicochem. Eng. Asp., 467 (2015) 113–123.
  23. M. Rafatullah, T. Ahmad, A. Ghazali, O. Sulaiman, M. Danish, R. Hashim, Oil palm biomass as a precursor of activated carbons: a review, Cri. Rev. Environ. Sci. Technol., 43 (2013) 1117–1161.
  24. A.L. Ahmad, S. Ismail, S. Bhatia, Water recycling from palm oil mill effluent (POME) using membrane technology, Desalination, 157 (2003) 87–95.
  25. A. Zahangir, S.A. Muyibi, J. Toramae, Statistical optimization of adsorption processes for removal of 2, 4-dichlorophenol by activated carbon derived from oil palm empty fruit bunches, J. Environ. Sci., 19 (2007) 674–677.
  26. C.H. Chia, A. Downie, P. Munroe, Characteristics of Biochar: Physical and Structural Properties, Biochar for Environmental Management: Science and Technology. Earthscan Books Ltd, London, 2015, pp. 89–109.
  27. A. Samsuri, F. Sadegh-Zadeh, B. Seh-Bardan, Characterization of biochars produced from oil palm and rice husks and their adsorption capacities for heavy metals, Int. J. Environ. Sci. Technol., 11 (2014) 967–976.
  28. X. Tan, Y. Liu, G. Zeng, X. Wang, X. Hu, Y. Gu, Z. Yang, Application of biochar for the removal of pollutants from aqueous solutions, Chemosphere, 125 (2015) 70–85.
  29. J. Igwe, C. Onyegbado, A. Abia, Adsorption isotherm studies of BOD, TSS and colour reduction from palm oil mill effluent (POME) using boiler fly ash, Eclética Química, 35 (2010) 195–208.
  30. M.A. Sukiran, L.S. Kheang, N.A. Bakar, C.Y. May, Production and characterization of bio-char from the pyrolysis of empty fruit bunches, Amer. J. Appl. Sci., 8 (2011) 984.
  31. M. Tripathi, J. Sahu, P. Ganesan, Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review, Renew. Sustain. Energy Rev., 55 (2016) 467–481.
  32. W.-J. Liu, F.-X. Zeng, H. Jiang, X.-S. Zhang, Preparation of high adsorption capacity bio-chars from waste biomass, Bioresour. Techno., 102 (2011) 8247–8252.
  33. R. Venderbosch, W. Prins, Fast pyrolysis technology development, Biofuels Bioproducts Biorefining, 4 (2010) 178–208.
  34. A. Ahmad, B. Hameed, Effect of preparation conditions of activated carbon from bamboo waste for real textile wastewater, J. Hazard. Mater., 173 (2010) 487–493.
  35. M.Z. Alam, S.A. Muyibi, M.F. Mansor, R. Wahid, Activated carbons derived from oil palm empty-fruit bunches: Application to environmental problems, J. Environ. Sci., 19 (2007) 103–108.
  36. S. Sumathi, S. Chai, A. Mohamed, Utilization of oil palm as a source of renewable energy in Malaysia, Renew. Sustain. Energy Rev., 12 (2008) 2404–2421.
  37. C.H. Neoh, A. Yahya, R. Adnan, Z. Abdul Majid, Z. Ibrahim, Optimization of decolorization of palm oil mill effluent (POME) by growing cultures of Aspergillus fumigatus using response surface methodology, Environ. Sci. Pollut. Res., 20 (2013) 2912–2923.
  38. N.S. Azmi, K.F.M. Yunos, Wastewater treatment of palm oil mill effluent (POME) by ultrafiltration membrane separation technique coupled with adsorption treatment as pre-treatment, Agricult. Agric. Sci. Procedia, 2 (2014) 257–264.
  39. S.P.D. Kaman, I.A.W. Tan, L.L.P. Lim, Palm oil mill effluent treatment using coconut shell–based activated carbon: Adsorption equilibrium and isotherm, in: MATEC Web of Conferences, EDP Sciences, 2017.
  40. J.-S. Chang, C. Chou, Y.-C. Lin, P.-J. Lin, J.-Y. Ho, T.L. Hu, Kinetic characteristics of bacterial azo-dye decolorization by Pseudomonas luteola, Water Res., 35 (2001) 2841–2850.
  41. A. Bhatnagar, F. Kaczala, W. Hogland, M. Marques, C.A. Paraskeva, V.G. Papadakis, M. Sillanpää, Valorization of solid waste products from olive oil industry as potential adsorbents for water pollution control—a review, Environ. Sci. Pollut. Res., 21 (2014) 268–298.
  42. C. Paduraru, L. Tofan, C. Teodosiu, I. Bunia, N. Tudorachi, O. Toma, Biosorption of zinc (II) on rapeseed waste: equilibrium studies and thermogravimetric investigations, Process Safe. Environ. Protect., 94 (2015) 18–28.
  43. X. Dong, J. Wang, Q. Cui, G. Liu, W. Yu, Preparation of LaFeO3 porous hollow nanofibers by electrospinning, Int. J. Chem., 1(1) 13–17 (2009).
  44. K.P.Y. Shak, T.Y. Wu, Synthesis and characterization of a plantbased seed gum via etherification for effective treatment of high-strength agro-industrial wastewater, Chem. Eng. J., 307 (2017) 928–938.
  45. M. Esfandbod, I. Phillips, B. Miller, M.R. Rashti, Z. Lan, P. Srivastava, B. Singh, C. Chen, Aged acidic biochar increases nitrogen retention and decreases ammonia volatilization in alkaline bauxite residue sand, Ecol. Eng., 98 (2017) 157–165.
  46. A.E. Ajayi, H. Rainer, Biochar-induced changes in soil resilience: Effects of soil texture and biochar dosage, Pedosphere, 27 (2017) 236–247.
  47. K. Parvathi, R. Nagendran, R. Nareshkumar, Lead biosorption onto waste beer yeast by-product: a means to decontaminate effluent generated from battery manufacturing industry, Elect. J. Biotechnol., 10 (2007) 92–105.
  48. N.Z. Rebitanim, W. Ghani, D. Mahmoud, N. Rebitanim, M. Salleh, Adsorption capacity of raw empty fruit bunch biomass onto methylene blue dye in aqueous solution, J. Pur. Util. React. Environ., 1 (2012) 45–60.
  49. S. Mamisahebei, G.R.J. Khaniki, A. Torabian, S. Nasseri, K. Naddafi, Removal of arsenic from an aqueous solution by pretreated waste tea fungal biomass, J. Environ. Health Sci. Eng., 4 (2007) 85–92.
  50. D.J. O’Shannessy, D.J. Winzor, Interpretation of deviations from pseudo-first-order kinetic behavior in the characterization of ligand binding by biosensor technology, Anal. Bio- Chem., 236 (1996) 275–283.
  51. Y. Ho, G. McKay, The sorption of lead (II) ions on peat, Water Res., 33 (1999) 578–584.
  52. Y.-S. Ho, G. McKay, Pseudo-second order model for sorption processes, Process Biochem., 34 (1999) 451–465.
  53. X.Y. Teh, P.E. Poh, D. Gouwanda, M.N. Chong, Decentralized light greywater treatment using aerobic digestion and hydrogen peroxide disinfection for non-potable reuse, J. Cleaner Prod., 99 (2015) 305–311.