References
- M.F. Awalludin, O. Sulaiman, R. Hashim, W.N.A.W. Nadhari,
An overview of the oil palm industry in Malaysia and its waste
utilization through thermochemical conversion, specifically
via liquefaction, Renew. Sustain. Energy Rev., 50 (2015) 1469–
1484.
- G. Beaudry, C. Macklin, E. Roknich, L. Sears, M. Wiener, S.H.
Gheewala, Greenhouse gas assessment of palm oil mill biorefinery
in Thailand from a life cycle perspective, Biomass Convers.
Biorefinery, (2017) 1–16.
- C. Hunsberger, A. Alonso-Fradejas, The discursive flexibility
of ‘flex crops’: comparing oil palm and jatropha, J. Peasant
Stud., 43 (2016) 225–250.
- R.R. Mohammed, Decolorisation of biologically treated palm
oil mill effluent (POME) using adsorption technique, Int. J.
Eng. Sci., 2 (2013) 1–11.
- R.R. Mohammed, M.R. Ketabchi, G. McKay, Combined magnetic
field and adsorption process for treatment of biologically
treated palm oil mill effluent (POME), Chem. Eng. J., 243 (2014)
31–42.
- X.J. Lee, L.Y. Lee, S. Gan, S. Thangalazhy-Gopakumar, H.K. Ng,
Biochar potential evaluation of palm oil wastes through slow
pyrolysis: Thermochemical characterization and pyrolytic
kinetic studies, Bioresour. Technol., 236 (2017) 155–163.
- Y.H. Jung, I.J. Kim, J.-I. Han, I.-G. Choi, K.H. Kim, Aqueous
ammonia pretreatment of oil palm empty fruit bunches for
ethanol production, Bioresour. Technol., 102 (2011) 9806–9809.
- S. Thangalazhy-Gopakumar, W.M.A. Al-Nadheri, D. Jegarajan,
J. Sahu, N. Mubarak, S. Nizamuddin, Utilization of palm
oil sludge through pyrolysis for bio-oil and bio-char production,
Bioresour. Technol., 178 (2015) 65–69.
- Y.H. Jung, I.J. Kim, J.J. Kim, K.K. Oh, J.-I. Han, I.-G. Choi, K.H.
Kim, Ethanol production from oil palm trunks treated with
aqueous ammonia and cellulase, Bioresour. Technol., 102
(2011) 7307–7312.
- C.I. Lim, W. Biswas, Y. Samyudia, Review of existing sustainability
assessment methods for Malaysian palm oil production,
Procedia CIRP, 26 (2015) 13–18.
- S.-H. Kong, S.-K. Loh, R.T. Bachmann, S.A. Rahim, J. Salimon,
Biochar from oil palm biomass: A review of its potential and
challenges, Renew. Sustain. Energy Rev., 39 (2014) 729–739.
- J. Sahu, J. Acharya, B. Sahoo, B. Meikap, Optimization of lead
(II) sorption potential using developed activated carbon from
tamarind wood with chemical activation by zinc chloride,
Desal. Water Treat., 57 (2016) 2006–2017.
- R. Gao, J. Wang, Effects of pH and temperature on isotherm
parameters of chlorophenols biosorption to anaerobic granular
sludge, J. Hazard. Mater., 145 (2007) 398–403.
- A. Idris, I. Ahmed, M.A. Limin, Influence of lithium chloride,
lithium bromide and lithium fluoride additives on performance
of polyethersulfone membranes and its application in
the treatment of palm oil mill effluent, Desalination, 250 (2010)
805–809.
- S. Parthasarathy, R.R. Mohammed, C.M. Fong, R.L. Gomes, S.
Manickam, A novel hybrid approach of activated carbon and
ultrasound cavitation for the intensification of palm oil mill
effluent (POME) polishing, J. Cleaner Prod., 112, Part 1 (2016)
1218–1226.
- H. Wang, J.L. Wang, The cooperative electrochemical oxidation
of chlorophenols in anode–cathode compartments, J. Hazard.
Mater., 154 (2008) 44–50.
- S. Poulopoulos, M. Nikolaki, D. Karampetsos, C. Philippopoulos,
Photochemical treatment of 2-chlorophenol aqueous
solutions using ultraviolet radiation, hydrogen peroxide and
photo-Fenton reaction, J. Hazard. Mater., 153 (2008) 582–587.
- A. Kuleyin, Removal of phenol and 4-chlorophenol by surfactant-
modified natural zeolite, J. Hazard. Mater., 144 (2007)
307–315.
- B. Labaran, M. Vohra, Application of activated carbon produced
from phosphoric acid-based chemical activation of oil
fly ash for the removal of some charged aqueous phase dyes:
role of surface charge, adsorption kinetics, and modeling,
Desal. Water Treat., 57(34) (2016) 16034–16052.
- Z.A. AlOthman, M.A. Habila, R. Ali, A.A. Ghafar, M.S.E.-d.
Hassouna, Valorization of two waste streams into activated
carbon and studying its adsorption kinetics, equilibrium
isotherms and thermodynamics for methylene blue removal,
Arab. J. Chem., 7 (2014) 1148–1158.
- R.-L. Tseng, S.-K. Tseng, Characterization and use of high surface
area activated carbons prepared from cane pith for liquid-
phase adsorption, J. Hazard. Mater., 136 (2006) 671–680.
- P. Strachowski, M. Bystrzejewski, Comparative studies of sorption
of phenolic compounds onto carbon-encapsulated iron
nanoparticles, carbon nanotubes and activated carbon, Colloids
Surf. A: Physicochem. Eng. Asp., 467 (2015) 113–123.
- M. Rafatullah, T. Ahmad, A. Ghazali, O. Sulaiman, M. Danish,
R. Hashim, Oil palm biomass as a precursor of activated
carbons: a review, Cri. Rev. Environ. Sci. Technol., 43 (2013)
1117–1161.
- A.L. Ahmad, S. Ismail, S. Bhatia, Water recycling from palm oil
mill effluent (POME) using membrane technology, Desalination,
157 (2003) 87–95.
- A. Zahangir, S.A. Muyibi, J. Toramae, Statistical optimization
of adsorption processes for removal of 2, 4-dichlorophenol by
activated carbon derived from oil palm empty fruit bunches, J.
Environ. Sci., 19 (2007) 674–677.
- C.H. Chia, A. Downie, P. Munroe, Characteristics of Biochar:
Physical and Structural Properties, Biochar for Environmental
Management: Science and Technology. Earthscan Books Ltd,
London, 2015, pp. 89–109.
- A. Samsuri, F. Sadegh-Zadeh, B. Seh-Bardan, Characterization
of biochars produced from oil palm and rice husks and their
adsorption capacities for heavy metals, Int. J. Environ. Sci.
Technol., 11 (2014) 967–976.
- X. Tan, Y. Liu, G. Zeng, X. Wang, X. Hu, Y. Gu, Z. Yang, Application
of biochar for the removal of pollutants from aqueous
solutions, Chemosphere, 125 (2015) 70–85.
- J. Igwe, C. Onyegbado, A. Abia, Adsorption isotherm studies
of BOD, TSS and colour reduction from palm oil mill effluent
(POME) using boiler fly ash, Eclética Química, 35 (2010)
195–208.
- M.A. Sukiran, L.S. Kheang, N.A. Bakar, C.Y. May, Production
and characterization of bio-char from the pyrolysis of empty
fruit bunches, Amer. J. Appl. Sci., 8 (2011) 984.
- M. Tripathi, J. Sahu, P. Ganesan, Effect of process parameters
on production of biochar from biomass waste through
pyrolysis: A review, Renew. Sustain. Energy Rev., 55 (2016)
467–481.
- W.-J. Liu, F.-X. Zeng, H. Jiang, X.-S. Zhang, Preparation of high
adsorption capacity bio-chars from waste biomass, Bioresour.
Techno., 102 (2011) 8247–8252.
- R. Venderbosch, W. Prins, Fast pyrolysis technology development,
Biofuels Bioproducts Biorefining, 4 (2010) 178–208.
- A. Ahmad, B. Hameed, Effect of preparation conditions of activated
carbon from bamboo waste for real textile wastewater, J.
Hazard. Mater., 173 (2010) 487–493.
- M.Z. Alam, S.A. Muyibi, M.F. Mansor, R. Wahid, Activated carbons
derived from oil palm empty-fruit bunches: Application
to environmental problems, J. Environ. Sci., 19 (2007) 103–108.
- S. Sumathi, S. Chai, A. Mohamed, Utilization of oil palm as
a source of renewable energy in Malaysia, Renew. Sustain.
Energy Rev., 12 (2008) 2404–2421.
- C.H. Neoh, A. Yahya, R. Adnan, Z. Abdul Majid, Z. Ibrahim,
Optimization of decolorization of palm oil mill effluent
(POME) by growing cultures of Aspergillus fumigatus using
response surface methodology, Environ. Sci. Pollut. Res., 20
(2013) 2912–2923.
- N.S. Azmi, K.F.M. Yunos, Wastewater treatment of palm oil
mill effluent (POME) by ultrafiltration membrane separation
technique coupled with adsorption treatment as pre-treatment,
Agricult. Agric. Sci. Procedia, 2 (2014) 257–264.
- S.P.D. Kaman, I.A.W. Tan, L.L.P. Lim, Palm oil mill effluent
treatment using coconut shell–based activated carbon:
Adsorption equilibrium and isotherm, in: MATEC Web of
Conferences, EDP Sciences, 2017.
- J.-S. Chang, C. Chou, Y.-C. Lin, P.-J. Lin, J.-Y. Ho, T.L. Hu,
Kinetic characteristics of bacterial azo-dye decolorization by
Pseudomonas luteola, Water Res., 35 (2001) 2841–2850.
- A. Bhatnagar, F. Kaczala, W. Hogland, M. Marques, C.A.
Paraskeva, V.G. Papadakis, M. Sillanpää, Valorization of solid
waste products from olive oil industry as potential adsorbents
for water pollution control—a review, Environ. Sci. Pollut.
Res., 21 (2014) 268–298.
- C. Paduraru, L. Tofan, C. Teodosiu, I. Bunia, N. Tudorachi, O.
Toma, Biosorption of zinc (II) on rapeseed waste: equilibrium
studies and thermogravimetric investigations, Process Safe.
Environ. Protect., 94 (2015) 18–28.
- X. Dong, J. Wang, Q. Cui, G. Liu, W. Yu, Preparation of LaFeO3
porous hollow nanofibers by electrospinning, Int. J. Chem.,
1(1) 13–17 (2009).
- K.P.Y. Shak, T.Y. Wu, Synthesis and characterization of a plantbased
seed gum via etherification for effective treatment of
high-strength agro-industrial wastewater, Chem. Eng. J., 307
(2017) 928–938.
- M. Esfandbod, I. Phillips, B. Miller, M.R. Rashti, Z. Lan, P.
Srivastava, B. Singh, C. Chen, Aged acidic biochar increases
nitrogen retention and decreases ammonia volatilization in
alkaline bauxite residue sand, Ecol. Eng., 98 (2017) 157–165.
- A.E. Ajayi, H. Rainer, Biochar-induced changes in soil resilience:
Effects of soil texture and biochar dosage, Pedosphere,
27 (2017) 236–247.
- K. Parvathi, R. Nagendran, R. Nareshkumar, Lead biosorption
onto waste beer yeast by-product: a means to decontaminate
effluent generated from battery manufacturing industry, Elect.
J. Biotechnol., 10 (2007) 92–105.
- N.Z. Rebitanim, W. Ghani, D. Mahmoud, N. Rebitanim, M.
Salleh, Adsorption capacity of raw empty fruit bunch biomass
onto methylene blue dye in aqueous solution, J. Pur. Util.
React. Environ., 1 (2012) 45–60.
- S. Mamisahebei, G.R.J. Khaniki, A. Torabian, S. Nasseri, K.
Naddafi, Removal of arsenic from an aqueous solution by pretreated
waste tea fungal biomass, J. Environ. Health Sci. Eng.,
4 (2007) 85–92.
- D.J. O’Shannessy, D.J. Winzor, Interpretation of deviations
from pseudo-first-order kinetic behavior in the characterization
of ligand binding by biosensor technology, Anal. Bio-
Chem., 236 (1996) 275–283.
- Y. Ho, G. McKay, The sorption of lead (II) ions on peat, Water
Res., 33 (1999) 578–584.
- Y.-S. Ho, G. McKay, Pseudo-second order model for sorption
processes, Process Biochem., 34 (1999) 451–465.
- X.Y. Teh, P.E. Poh, D. Gouwanda, M.N. Chong, Decentralized
light greywater treatment using aerobic digestion and hydrogen
peroxide disinfection for non-potable reuse, J. Cleaner
Prod., 99 (2015) 305–311.