References

  1. M.F. Sweeney, N. Hasan, A.M. Soto, C. Sonnenschein, Environmental endocrine disruptors: effects on the human male reproductive system, Rev. Endocr. Metab. Disord., 16 (2016) 341–357.
  2. J. Jurewicz, M. Radwan, W. Sobala, P. Radwan, L. Jakubowski, B. Wielgomas, D. Ligocka, S. Brzenicki, W. Hanke, Exposure to widespread environmental endocrine disrupting chemicals and human sperm sex ratio, Environ. Pollut., 213 (2016) 732–740.
  3. E.G. Xu, P.W. Ho, Z. Tse, S.L. Ho, K.M.Y. Leung, Revealing ecological risks of priority endocrine disrupting chemicals in four marine protected areas in Hong Kong through an integrative approach, Environ. Pollut., 215 (2016) 103–112.
  4. Y.Q. Huang, C.K.C. Wong, J.S. Zheng, H. Bouwman, R. Barra, B. Wahlstrom, L. Neretin, M.H. Wong, Bisphenol A (BPA) in China: a review of sources, environmental levels, and potential human health impacts, Environ. Int., 42 (2012) 91–99.
  5. L.H. You, V.T. Nguyen, A. Pal, H.T. Chen, Y.L. He, M. Reinhard, K.Y.H. Gin, Investigation of pharmaceuticals, personal care products and endocrine disrupting chemicals in tropical urban catchment and the influence of environmental factors, Sci. Total Environ., 536 (2015) 955–963.
  6. G.D. Wang, P. Ma, Q. Zhang, J. Lewis, M. Lacey, Y. Furukawa, S.E. O’Reily, S. Meaux, J. McLachlan, S. Zhang, Endocrine disrupting chemicals in New Orleans surface waters and Mississippi Sound sediments, J. Environ. Monit., 14 (2012) 1353–1364.
  7. J.H. Kang, F. Kondo, Y. Katayama, Human exposure to bisphenol A, Toxicology, 226 (2006) 79–89.
  8. G.P. Anipsitakis, D.D. Dionysiou, Radical generation by the interaction of transition metals with common oxidants, Environ. Sci. Technol., 38 (2004) 3705–3712.
  9. J. Deng, Y.S. Shao, N.Y. Gao, C.Q. Tan, S.Q. Zhou, X.H. Hu, CoFe2O4 magnetic nanoparticles as highly active heterogeneous catalyst of oxone for the degradation of diclofenac in water, J. Hazard. Mater., 262 (2013) 836–844.
  10. P.D. Hu, M.C. Long, Cobalt-catalyzed sulfate radical-based advanced oxidation: a review on heterogeneous catalysts and applications, Appl. Catal., B, 181 (2016) 103–117.
  11. J. Deng, Y.S. Shao, N.Y. Gao, S.J. Xia, C.Q. Tan, S.Q. Zhou, X.H. Hu, Degradation of the antiepileptic drug carbamazepine upon different UV-based advanced oxidation processes in water, Chem. Eng. J., 222 (2013) 150–158.
  12. C.Q. Tan, D.F. Fu, N.Y. Gao, Q.D. Qin, Y. Xu, H.M. Xiang, Kinetic degradation of chloramphenicol in water by UV/persulfate system, J. Photochem. Photobiol., A, 332 (2017) 406–412.
  13. W.H. Chu, D.M. Li, N.Y. Gao, M.R. Templeton, C.Q. Tan, Y.Q. Gao, The control of emerging haloacetamide DBP precursors with UV/persulfate treatment, Water Res., 72 (2015) 340–348.
  14. J. Deng, Y.S. Shao, N.Y. Gao, Y. Deng, S.Q. Zhou, X.H. Hu, Thermally activated persulfate (TAP) oxidation of antiepileptic drug carbamazepine in water, Chem. Eng. J., 228 (2013) 765–771.
  15. W.H. Chu, J.L. Hu, T. Bond, N.Y. Gao, B. Xu, D.Q. Yin, Water temperature significantly impacts the formation of iodinated haloacetamides during persulfate oxidation, Water Res., 98 (2016) 47–55.
  16. S.N. Su, W.L. Guo, C.L. Yi, Y.Q. Leng, Z.M. Ma, Degradation of amoxicillin in aqueous solution using sulphate radicals under ultrasound irradiation, Ultrason. Sonochem., 19 (2012) 469–474.
  17. O.S. Furman, A.L. Teel, R.J. Watts, Mechanism of base activation of persulfate, Environ. Sci. Technol., 44 (2010) 6423–6428.
  18. S.Y. Yang, P. Wang, X. Yang, L. Shan, W.Y. Zhang, X.T. Shao, R. Niu, Degradation efficiencies of azo dye Acid Orange 7 by the interaction of heat, UV and anions with common oxidants: persulfate, peroxymonosulfate and hydrogen peroxide, J. Hazard. Mater., 179 (2010) 552–558.
  19. Y.X. Wang, Z.M. Ao, H.Q. Sun, X.G. Duan, S.B. Wang, Activation of peroxymonosulfate by carbonaceous oxygen groups: experimental and density functional theory calculations, Appl. Catal., B, 198 (2016) 295–302.
  20. J. Kang, X.G. Duan, L. Zhou, H.Q. Sun, M.O. Tade, S.B. Wang, Carbocatalytic activation of persulfate for removal of antibiotics in water solutions, Chem. Eng. J., 288 (2016) 399–405.
  21. P.H. Shao, X.G. Duan, J. Xu, J.Y. Tian, W.X. Shi, S.S. Gao, M.J. Xu, F.Y. Cui, S.B. Wang, Heterogeneous activation of peroxymonosulfate by amorphous boron for degradation of bisphenol S, J. Hazard. Mater., 322 (2017) 532–539.
  22. X.G. Duan, H.Q. Sun, Z.M. Ao, L. Zhou, G.X. Wang, S.B. Wang, Unveiling the active sites of graphene-catalyzed peroxymonosulfate activation, Carbon, 107 (2016) 371–378.
  23. G.P. Anipsitakis, D.D. Dionysiou, Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt, Environ. Sci. Technol., 37 (2003) 4790–4797.
  24. K. Liu, J.H. Lu, Y.F. Ji, Formation of brominated disinfection by-products and bromate in cobalt catalyzed peroxymonosulfate oxidation of phenol, Water Res., 84 (2015) 1–7.
  25. ] G.P. Anipsitakis, E. Stathatos, D.D. Dionysiou, Heterogeneous activation of oxone using Co3O4, J. Phys. Chem. B, 109 (2005) 13052–13055.
  26. X.Y. Chen, J.W. Chen, X.L. Qiao, D.G. Wang, X.Y. Cai, Performance of nano-Co3O4/peroxymonosulfate system: kinetics and mechanism study using Acid Orange 7 as a model compound, Appl. Catal., B, 80 (2008) 116–121.
  27. Y.T. Zhang, C. Liu, B.B. Xu, F. Qi, W. Chu, Degradation of benzotriazole by a new novel Fenton-like reaction with mesoporous Cu/MnO2: combination of absorption and catalysis oxidation, Appl. Catal., B, 199 (2016) 447–457.
  28. Y.B. Ding, L.H. Zhu, N. Wang, H.Q. Tang, Sulfate radicals induced degradation of tetrabromobisphenol A with nanoscaled magnetic CuFe2O4 as heterogeneous catalyst of peroxymonosulfate, Appl. Catal., B, 129 (2013) 153–162.
  29. Y.J. Yao, Y.M. Cai, G.D. Wu, F.Y. Wei, X.Y. Li, H. Chen, S.B. Wang, Sulfate radicals induced from peroxymonosulfate by cobalt manganese oxides (CoxMn3-xO4) for Fenton-like reaction in water, J. Hazard. Mater., 296 (2015) 128–137.
  30. J. Deng, S.F. Feng, K.J. Zhang, J. Li, H.Y. Wang, T.Q. Zhang, X.Y. Ma, Heterogeneous activation of peroxymonosulfate using ordered mesoporous Co3O4 for the degradation of chloramphenicol at neutral pH, Chem. Eng. J., 308 (2017) 505–515.
  31. T. Grewe, X.H. Deng, C. Weidenthaler, F. Schuth, H. Tuysuz, Design of ordered mesoporous composite materials and their electrocatalytic activities for water oxidation, Chem. Mater., 25 (2013) 4926–4935.
  32. F. Ji, C.L. Li, X.Y. Wei, J. Yu, Efficient perform porous Fe2O3 in heterogeneous activation of peroxymonosulfate for decolorization of Rhodamine B, Chem. Eng. J., 231 (2013) 434–440.
  33. J. Deng, S.F. Feng, X.Y. Ma, C.Q. Tan, H.Y. Wang, S.Q. Zhou, T.Q. Zhang, J. Li, Heterogeneous degradation of Orange II with peroxymonosulfate activated by ordered mesoporous MnFe2O4, Sep. Purif. Technol., 167 (2016) 181–189.
  34. T. Zhang, H.B. Zhu, J.P. Croue, Production of sulfate radical from peroxymonosulfate induced by a magnetically separable CuFe2O4 spinel in water: efficiency, stability, and mechanism, Environ. Sci. Technol., 47 (2013) 2784–2791.
  35. Y.M. Ren, L.Q. Lin, J. Ma, J. Yang, J. Feng, Z.J. Fan, Sulfate radicals induced from peroxymonosulfate by magnetic ferrospinel MFe2O4 (M = Co, Cu, Mn, and Zn) as heterogeneous catalysts in the water, Appl. Catal., B, 165 (2015) 572–578.
  36. Z.H. Ai, Z.T. Gao, L.Z. Zhang, W.W. He, J.J. Yin, Core-shell structure dependent reactivity of Fe@Fe2O3 nanowires on aerobic degradation of 4-chlorophenol, Environ. Sci. Technol., 47 (2013) 5344–5352.
  37. Y. Xu, J. Ai, H. Zhang, The mechanism of degradation of bisphenol A using the magnetically separable CuFe2O4/peroxymonosulfate heterogeneous oxidation process, J. Hazard. Mater., 309 (2016) 87–96.
  38. S.N. Su, W.L. Guo, Y.Q. Leng, C.L. Yi, Z.M. Ma, Heterogeneous activation of Oxone by CoxFe3-xO4 nanocatalysts for degradation of rhodamine B, J. Hazard. Mater., 244–245 (2013) 736–742.
  39. Y.H. Guan, J. Ma, X.C. Li, J.Y. Fang, L.W. Chen, Influence of pH on the formation of sulfate and hydroxyl in the UV/peroxymonosulfate system, Environ. Sci. Technol., 45 (2011) 9308–9314.
  40. E. Saputra, S. Muhammad, H.Q. Sun, H.M. Ang, M.O. Tade, S.B. Wang, Manganese oxides at different oxidation states for heterogeneous activation of peroxymonosulfate for phenol degradation in aqueous solutions, Appl. Catal., B, 142–143 (2013) 729–735.
  41. Y.C. Du, W.J. Ma, P.X. Liu, B.H. Zou, J. Ma, Magnetic CoFe2O4 nanoparticles supported on titanate nanotubes (CoFe2O4/TNTs) as a novel heterogeneous catalyst for peroxymonosulfate activation and degradation of organic pollutants, J. Hazard. Mater., 308 (2016) 58–66.
  42. F. Qi, W. Chu, B.B. Xu, Catalytic degradation caffeine in aqueous solutions by cobalt-MCM41 activation of peroxymonosulfate, Appl. Catal., B, 134–135 (2013) 324–332.
  43. L.J. Xu, W. Chu, L. Gan, Environmental application of graphene-based CoFe2O4 as an activator of peroxymonosulfate for the degradation of a plasticizer, Chem. Eng. J., 263 (2015) 435–443.
  44. J. Zhang, M.Y. Chen, L. Zhu, Activation of peroxymonosulfate by iron-based catalysts for orange G degradation: role of hydroxylamine, RSC Adv., 6 (2016) 47562–47569.
  45. S.K. Rani, D. Easwaramoorthy, I.M. Bilal, M. Palanichamy, Studies on Mn(II)-catalyzed oxidation of α-amino acids by peroxomonosulphate in alkaline medium-deamination and decarboxylation: a kinetic approach, Appl. Catal., A, 369 (2009) 1–7.
  46. J.K. Du, J.G. Bao, Y. Liu, H.B. Ling, H. Zheng, S.H. Kim, D.D. Dionysiou, Efficient activation of peroxymonosulfate by magnetic Mn-MGO for degradation of bisphenol A, J. Hazard. Mater., 320 (2016) 150–159.
  47. Y. Zhao, Y.S. Zhao, R. Zhou, Y. Mao, W. Tang, H.J. Ren, Insights into the degradation of 2,4-dichlorophenol in aqueous solution by α-MnO2 nanowire activated persulfate: catalytic performance and kinetic modeling, RSC Adv., 6 (2016) 35441–35448.
  48. H. Hassan, B.H. Hammed, Fe-clay as effective heterogeneous Fenton catalyst for the decolorization of Reactive Blue 4, Chem. Eng. J., 171 (2011) 912–918.
  49. W. Li, P.X. Wu, Y.J. Zhu, Z.J. Huang, Y.H. Lu, Y.W. Li, Z. Dang, N.W. Zhu, Catalytic degradation of bisphenol A by CoMnAl mixed mental oxides catalyzed peroxymonosulfate: performance and mechanism, Chem. Eng. J., 279 (2015) 93–102.
  50. P.R. Shukla, S.B. Wang, H.Q. Sun, H.M. Ang, M. Tade, Activated carbon supported cobalt catalysts for advanced oxidation of organic contaminants in aqueous solution, Appl. Catal., B, 100 (2010) 529–534.
  51. A. Ghauch, A.M. Tuqan, Oxidation of bisoprolol in heated persulfate/H2O systems: kinetics and products, Chem. Eng. J., 183 (2012) 162–171.
  52. Y.J. Xiao, L.F. Zhang, W. Zhang, K.Y. Lim, R.D. Webster, T.T. Lim, Comparative evaluation of iodoacids removal by UV/persulfate and UV/H2O2 processes, Water Res., 102 (2016) 629–639.
  53. C.Q. Tan, N.Y. Gao, D.F. Fu, J. Deng, L. Deng, Efficient degradation of paracetamol with nanoscaled magnetic CoFe2O4and MnFe2O4 as a heterogeneous catalyst of peroxymonosulfate, Sep. Purif. Technol., 175 (2017) 47–57.
  54. X.Y. Wei, N.Y. Gao, C.J. Li, Y. Deng, S.Q. Zhou, L. Li, Zero-valent iron (ZVI) activation of persulfate (PS) for oxidation of bentazon in water, Chem. Eng. J., 285 (2016) 660–670.
  55. T. Zhou, X.L. Zou, J. Mao, X.H. Wu, Decomposition of sulfadiazine in sonochemical Fe0-catalyzed persulfate system: parameters optimizing and interferences of wastewater matrix, Appl. Catal., B, 185 (2016) 31–41.
  56. X.L. Wu, X.G. Gu, S.G. Lu, Z.F. Qiu, Q. Sui, X.K. Zang, Z.W. Miao, M.H. Xu, Strong enhancement of trichloroethylene degradation in ferrous ion activated persulfate system by promoting ferric and ferrous ion cycles with hydroxylamine, Sep. Purif. Technol., 147 (2015) 186–193.
  57. Y.F. Rao, L. Qu, H.S. Yang, W. Chu, Degradation of carbamazepine by Fe(II)-activated persulfate process, J. Hazard. Mater., 268 (2014) 23–32.
  58. Y.Q. Gao, N.Y. Gao, Y. Deng, D.Q. Yin, Y.S. Zhang, W.L. Rong, S.D. Zhou, Heat-activated persulfate oxidation of sulfamethoxazole in water, Desal. Wat. Treat., 56 (2015) 2225–2233.
  59. R.X. Yuan, S.N. Ramjaun, Z.H. Wang, J.S. Liu, Effects of chloride ion on degradation of Acid Orange 7 by sulfate radical-based advanced oxidation process: implications for formation of chlorinated aromatic compounds, J. Hazard. Mater., 196 (2011) 173–179.
  60. F. Gong, L. Wang, D.W. Li, F.Y. Zhou, Y.Y. Yao, W.Y. Lu, S.Q. Huang, W.X. Chen, An effective heterogeneous iron-based catalyst to activate peroxymonosulfate for organic contaminants removal, Chem. Eng. J., 267 (2015) 102–110.
  61. Y.J. Yao, Y.M. Cai, F. Lu, F.Y. Wei, X.Y. Wang, S.B. Wang, Magnetic recoverable MnFe2O4 and MnFe2O4-graphene hybrid as heterogeneous catalysts of peroxymonosulfate activation for efficient degradation of aqueous organic pollutants, J. Hazard. Mater., 270 (2014) 61–70.
  62. X.Y. Lou, Y.G. Guo, D.X. Xiao, Z.H. Wang, S.Y. Lu, J.S. Liu, Rapid dye degradation with reactive oxidants generated by chloride-induced peroxymonosulfate activation, Environ. Sci. Pollut. Res., 20 (2013) 6317–6323.
  63. J. Zhou, J.H. Xiao, D.X. Xiao, Y.G. Guo, C.L. Fang, X.Y. Lou, Z.H. Wang, J.S. Liu, Transformations of chloro and nitro groups during the peroxymonosulfate-based oxidation of 4-chloro-2-nitrophenol, Chemosphere, 134 (2015) 446–451.
  64. X.Y. Lou, L.X. Wu, Y.G. Guo, C.C. Chen, Z.H. Wang, D.X. Xiao, C.L. Fang, G.S. Liu, J.C. Zhao, S.Y. Lu, Peroxymonosulfate activation by phosphate anion for organics degradation in water, Chemosphere, 117 (2014) 582–585.