References

  1. C. Zhang, H. Su, J. Baeyens, T. Tan, Reviewing the anaerobic digestion of food waste for biogas production, Renew. Sustain. Energy Rev., 38 (2014) 383–392.
  2. C.Y. Liu, H. Li, Y.Y. Zhang, C. Liu, Improve biogas production from low-organic-content sludge through high-solids anaerobic co-digestion with food waste, Bioresour. Technol., 219 (2016) 252–260.
  3. X.H. Dai, X.S. Li, D. Zhang, Y.G. Chen, L.L. Dai, Simultaneous enhancement of methane production and methane content in biogas from WAS and perennial ryegrass anaerobic co-digestion: the effects of pH and C/N ratio, Bioresour. Technol., 216 (2016) 323–330.
  4. D.I. Massé, R.L. Droste, Comprehensive model of anaerobic digestion of swine manure slurry in a sequencing batch reactor, Water Res., 34 (2000) 3087–3106.
  5. P.F. Dunfield, V.N. Khmelenina, N.E. Suzina, Y.A. Trotsenko, S.N. Dedysh, Methylocella silvestris sp. nov., a novel methanotroph isolated from an acidic forest cambisol, Int. J. Syst. Evol. Microbiol., 53 (2003) 1231–1239.
  6. M. Imbierowicz, A. Chacuk, Kinetic model of excess activated sludge thermohydrolysis, Water Res., 46 (2012) 5747–5755.
  7. S. Ibeid, M. Elektorowicz, J. Oleszkiewicz, Modification of activated sludge properties caused by application of continuous and intermittent current, Water Res., 47 (2013) 903–910.
  8. I.W. Nah, Y.W. Kang, K.Y. Hwang, W.K. Song, Mechanical pretreatment of waste activated sludge for anaerobic digestion process, Water Res., 34 (2000) 2362–2368.
  9. D.L. Wu, Y.H. Shen, A.Q. Ding, Q. Mahmood, S. Liu, Q.P. Tu, Effects of nanoscale zero-valent iron particles on biological nitrogen and phosphorus removal and microorganisms in activated sludge, J. Hazard. Mater., 262 (2013) 649–655.
  10. F. Suanon, Q. Sun, M.Y. Li, X. Cai, Y.C. Zhang, Y.J. Yan, C.P. Yu, Application of nanoscale zero valent iron and iron powder during sludge anaerobic digestion: impact on methane yield and pharmaceutical and personal care products degradation, J. Hazard. Mater., 321 (2017) 47–53.
  11. Y. Liu, Y. Zhang, X. Quan, Y. Li, Z. Zhao, X. Meng, S. Chen, Optimization of anaerobic acidogenesis by adding Fe0 powder to enhance anaerobic wastewater treatment, Chem. Eng. J., 192 (2012) 179–185.
  12. S. Rasi, J. Läntelä, J. Rintala, Trace compounds affecting biogas energy utilization – a review, Energy Convers. Manage., 52 (2011) 3369–3375.
  13. S. Yang, Y. Tang, M. Gou, X. Jiang, Effect of sulfate addition on methane production and sulfate reduction in a mesophilic acetate-fed anaerobic reactor, Appl. Microbiol. Biotechnol., 99 (2015) 3269–3277.
  14. L. Krayzelova, J. Bartacek, N. Kolesarova, P. Jenicek, Microaeration for hydrogen sulfide removal in UASB reactor, Bioresour. Technol., 172 (2014) 297–302.
  15. J.S. Lar, X. Li, Removal of H2S during anaerobic bioconversion of dairy manure, Chin. J. Chem. Eng., 17 (2009) 273–277.
  16. M. Syed, G. Soreanu, P. Faletta, M. Béland, Removal of hydrogen sulfide from gas streams using biological processes – a review, Can. Biosyst. Eng., 48 (2006) 2.1–2.14.
  17. D.P. Kelly, J.K. Shergill, W.P. Lu, A.P. Wood, Oxidative metabolism of inorganic sulfur compounds by bacteria, Anton. Leeuw. Int. J. G., 71 (1997) 95–107.
  18. F.P. van der Zee, S. Villaverde, P.A. García-Encina, F. Fdz-Polanco, Sulphide removal by moderate oxygenation of anaerobic sludge environments, Bioresour. Technol., 98 (2007) 518–524.
  19. L. Chu, S. Yan, X.H. Xing, X. Sun, B. Jurcik, Progress and perspectives of sludge ozonation as a powerful pretreatment method for minimization of excess sludge production, Water Res., 43 (2009) 1811–1822.
  20. I. Ramos, I. Díaz, M. Fdz-Polanco, The role of the headspace in hydrogen sulfide removal during microaerobic digestion of sludge, Water Sci. Technol., 66 (2012) 2258–2264.
  21. APHA, Standard Methods for the Examination of Water and Waste Water, 20th ed., American Public Health association, American Water Works Association Water Pollution control Federation, Washington, D.C., USA, 1998.
  22. Y.B. Zhang, Y.H. Feng, Q.L. Yu, Z.B. Xu, X. Quan, Enhanced high-solids anaerobic digestion of waste activated sludge by the addition of scrap iron, Bioresour. Technol., 159 (2014) 297–304.
  23. D.C. Devlin, S.R.R. Esteves, R.M. Dinsdale, A.J. Guwy, The effect of acid pretreatment on the anaerobic digestion and dewatering of waste activated sludge, Bioresour. Technol., 102 (2011) 4076–4082.
  24. N.D. Park, S.S. Helle, R.W. Thring, Combined alkaline and ultrasound pretreatment of thickened pulp mill waste activated sludge for improved anaerobic digestion, Biomass Bioenergy, 46 (2012) 750–756.
  25. I. Ramos, R. Pérez, M. Reinoso, R. Torio, M. Fdz-Polanco, Microaerobic digestion of sewage sludge on an industrialpilot scale: the efficiency of biogas desulphurisation under different configurations and the impact of O2 on the microbial communities, Bioresour. Technol., 164 (2014) 338–346.
  26. Y. Feng, Y. Zhang, X. Quan, S. Chen, Enhanced anaerobic digestion of waste activated sludge digestion by the addition of zero valent iron, Water Res., 52 (2014) 242–250.
  27. A.K. Lee, D.K. Newman, Microbial iron respiration: impacts on corrosion processes, Appl. Microbiol. Biotechnol., 62 (2003) 134–139.
  28. J.T. Yuan, W. Wang, S.L. Zhu, F.H. Wang, Comparison between the oxidation of iron in oxygen and in steam at 650–750°C, Corros. Sci., 75 (2013) 309–317.
  29. D. Mamais, P.A. Pitt, Y.W. Cheng, J. Loiacono, D. Jenkins, Determination of ferric chloride dose to control struvite precipitation in anaerobic sludge digesters, Water Environ. Res., 66 (1994) 912–918.
  30. D.J. Batstone, D. Puyol, X. Flores-Alsina, J. Rodriguez, Mathematical modelling of anaerobic digestion processes: applications and future needs, Rev. Environ. Sci. Biotechnol., 14 (2015) 595–613.
  31. S. Karri, R. Sierra-Alvarez, J.A. Field, Zero valent iron as an electron-donor for methanogenesis and sulfate reduction in anaerobic sludge, Biotechnol. Bioeng., 92 (2005) 810–819.
  32. D. Deublein, A. Steinhauser, Biogas from Waste and Renewable Resources: An Introduction, Wiley-VCH, Weinheim, 2008, pp. 419–488.
  33. M. Murto, L. Björnsson, B. Mattiasson, Impact of food industrial waste on anaerobic co-digestion of sewage sludge and pig manure, J. Environ. Manage., 70 (2004) 101–107.
  34. J.A. Ogejo, Z. Wen, J. Ignosh, E. Bendfeldt, E.R. Collins, Biomethane Technology, Virginia Cooperative Extension, Virginia, 2009, pp. 442–881.
  35. I. Ramos, I. Díaz, M. Fdz-Polanco, The role of the headspace in hydrogen sulfide removal during microaerobic digestion of sludge, Water Sci. Technol., 66 (2012) 2258–2264.
  36. L. Krayzelova, J. Bartacek, I. Díaz, D. Jeison, E.I.P. Volcke, P. Jenicek, Microaeration for hydrogen sulfide removal during anaerobic treatment: a review, Rev. Environ. Sci. Biotechnol., 14 (2015) 703–725.
  37. T.M. Watson, A.J. Coleman, G. Williams, H.N. McMurray, The effect of oxygen partial pressure on the filiform corrosion of organic coated iron, Corrosion Sci., 89 (2014) 46–58.
  38. E. Kwietniewska, J. Tys, Process characteristics, inhibition factors and methane yields of anaerobic digestion process, with particular focus on microalgal biomass fermentation, Renew. Sustain. Energy Rev., 34 (2014) 491–500.
  39. Y.B. Zhang, Y.W. Jing, J.X. Zhang, L.F. Sun, X. Quan, Performance of a ZVI-UASB reactor for azo dye wastewater treatment, J. Chem. Technol. Biotechnol., 86 (2011) 199–204.
  40. Y. Liu, Y. Zhang, X. Quan, S. Chen, H. Zhao, Applying an electric field in a built-in zero valent iron—anaerobic reactor for enhancement of sludge granulation, Water Res., 45 (2011) 1258–1266.
  41. P. Jenicek, C. Celis, J. Koubova, D. Pokorna, Comparison of microbial activity in anaerobic and microaerobic digesters, Water Sci. Technol., 63 (2011) 2244–2249.
  42. P. Jenicek, J. Koubova, J. Bindzar, J. Zabranska, Advantages of anaerobic digestion of sludge in microaerobic conditions, Water Sci. Technol., 62 (2010) 427–434.
  43. D. Botheju, G. Samarakoon, C. Chen, R. Bakke, An Experimental Study on the Effects of Oxygen in Bio-Gasification: Part 1, International Conference on Renewable Energies and Power Quality 2010, Granada.
  44. J.W. Lim, J.Y. Wang, Enhanced hydrolysis and methane yield by applying microaeration pretreatment to the anaerobic co-digestion of brown water and food waste, Waste Manage., 33 (2013) 813–819.
  45. A.P. Annachhatre, S. Suktrakoolvait, Biological sulfide oxidation in a fluidized bed reactor, Environ. Technol., 22 (2001) 661–672.
  46. I. Díaz, A.C. Lopes, S.I. Pérez, M. Fdz-Polanco, Performance evaluation of oxygen, air and nitrate for the microaerobic removal of hydrogen sulphide in biogas from sludge digestion, Bioresour. Technol., 101 (2010) 7724–7730.
  47. R.E. Hungate, A Roll Tube Method for Cultivation of Strict Anaerobes, Chapter IV, J.R. Norris, D.W. Ribbons, Eds., Methods in Microbiology, Part B, Vol. 3, Academic Press, London, 1969, pp. 117–132.
  48. P. Peu, J.F. Sassi, R. Girault, S. Picard, P. Saint-Cast, F. Béline, P. Dabert, Sulphur fate and anaerobic biodegradation potential during co-digestion of seaweed biomass (Ulva sp.) with pig slurry, Bioresour. Technol., 102 (2011) 10794–10802.