References

  1. J. Wang, X. Jiang, B. Zheng, C. Chen, X. Kang, C. Zhang, Z. Song, K. Wang, W. Wang, S. Wang, Effect of algal bloom on phosphorus exchange at the sediment-water interface in Meiliang Bay of Taihu Lake, China, Environ. Earth Sci., 75 (2016) 1–9.
  2. V. Ruban, J.F. López-Sánchez, P. Pardo, G. Rauret, H. Muntau, P. Quevauviller, Harmonized protocol and certified reference material for the determination of extractable contents of phosphorus in freshwater sediments – a synthesis of recent works, Fresenius J. Anal. Chem., 370 (2001) 224–228.
  3. L. Wang, T. Liang, Distribution characteristics of phosphorus in the sediments and overlying water of Poyang Lake, PLoS One, 10 (2015) e0125859.
  4. C. Chen, W. Deng, X. Xu, J. He, S. Wang, L. Jiao, Y. Zhang, Phosphorus adsorption and release characteristics of surface sediments in Dianchi Lake, China, Environ. Earth Sci., 74 (2015) 3689–3700.
  5. X. Jin, X. Jiang, Y. Yao, L. Li, F. Wu, Effects of organisms on the release of phosphorus at the interface between sediment and water, Water Environ. Res., 79 (2007) 2253–2259.
  6. Y. Wu, Y. Wen, J. Zhou, Y. Wu, Phosphorus release from lake sediments: effects of pH, temperature and dissolved oxygen, KSCE J. Civil Eng., 18 (2014) 323–329.
  7. F. Zan, S. Huo, B. Xi, Q. Li, H. Liao, J. Zhang, Phosphorus distribution in the sediments of a shallow eutrophic lake, Lake Chaohu, China, Environ. Earth Sci., 62 (2011) 1643–1653.
  8. M.W. Beutel, Inhibition of ammonia release from anoxic profundal sediments in lakes using hypolimnetic oxygenation, Ecol. Eng., 28 (2006) 271–279.
  9. M. Dittrich, O. Gabriel, C. Rutzen, R. Koschel, Lake restoration by hypolimnetic Ca(OH)2 treatment: impact on phosphorus sedimentation and release from sediment, Sci. Total Environ., 409 (2011) 1504–1515.
  10. J. Lin, Y. Zhan, Z. Zhu, Evaluation of sediment capping with active barrier systems (ABS) using calcite/zeolite mixtures to simultaneously manage phosphorus and ammonium release, Sci. Total Environ., 409 (2011) 638–646.
  11. E. Rydin, Potentially mobile phosphorus in Lake Erken sediment, Water Res., 34 (2000) 2037–2042.
  12. X. Jin, S. Wang, Y. Pang, F.C. Wu, Phosphorus fractions and the effect of pH on the phosphorus release of the sediments from different trophic areas in Taihu Lake, China, Environ. Pollut., 139 (2006) 288–295.
  13. R. Zhang, F. Wu, C. Liu, P. Fu, W. Li, L. Wang, H. Liao, J. Guo, Characteristics of organic phosphorus fractions in different trophic sediments of lakes from the middle and lower reaches of Yangtze River region and Southwestern Plateau, China, Environ. Pollut., 152 (2008) 366–372.
  14. D. Kapiti, A. Bekteshi, Phosphorus bioavailability in sediments of a sludge-disposal shkodra lake, J. Environ. Prot. Ecol., 15 (2014) 48–52.
  15. A. Kaiserli, D. Voutsa, C. Samara, Phosphorus fractionation in lake sediments – Lakes Volvi and Koronia, N. Greece, Chemosphere, 46 (2002) 1147–1155.
  16. W. Qu, R.J. Morrison, R.J. West, Inorganic nutrient and oxygen fluxes across the sediment–water interface in the inshore macrophyte areas of a shallow estuary (Lake Illawarra, Australia), Hydrobiologia, 492 (2003) 119–127.
  17. S. Schneider, A. Melzer, Sediment and water nutrient characteristics in patches of submerged macrophytes in running waters, Hydrobiologia, 527 (2004) 195–207.
  18. A. Topçu, S. Pulatsü, Phosphorus fractions and cycling in the sediment of a shallow eutrophic pond, J. Agric. Sci., 20 (2014) 63–70.
  19. D.K. Pelton, S.N. Levine, M. Braner, Measurements of phosphorus uptake by macrophytes and epiphytes from the LaPlatte River (VT) using 32P in stream microcosms, Freshwater Biol., 39 (1998) 285–299.
  20. D. Jamet, C. Amblard, J. Devaux, Seasonal changes in alkaline phosphatase activity of bacteria and microalgae in Lake Pavin (Massif Central, France), Hydrobiologia, 347 (1997) 175–195.
  21. M. Schulz, H.-P. Kozerski, T. Pluntke, K. Rinke, The influence of macrophytes on sedimentation and nutrient retention in the lower River Spree (Germany), Water Res., 37 (2003) 569–578.
  22. E. Grisey, X. Laffray, O. Contoz, E. Cavalli, J. Mudry, L. Aleya, The bioaccumulation performance of reeds and cattails in a constructed treatment wetland for removal of heavy metals in landfill leachate treatment (Etueffont, France), Water Air Soil Pollut., 223 (2012) 1723–1741.
  23. Y. Dong, Application of Integrated Constructed Wetlands for Contaminant Treatment and Diffusion, The University of Edinburgh, Edinburgh, 2013.
  24. Z. Ben Salem, X. Laffray, A. Ashoour, H. Ayadi, L. Aleya, Metal accumulation and distribution in the organs of Reeds and Cattails in a constructed treatment wetland (Etueffont, France), Ecol. Eng., 64 (2014) 1–17.
  25. Y. Vergeles, N. Butenko, A. Ishchenko, F. Stolberg, M. Hogland, W. Hogland, Formation and properties of sediments in constructed wetlands for treatment of domestic wastewater, Urban Water J., 13 (2016) 293–301.
  26. D. Zak, J. Gelbrecht, S. Zerbe, T. Shatwell, M. Barth, A. Cabezas, P. Steffenhagen, How helophytes influence the phosphorus cycle in degraded inundated peat soils – implications for fen restoration, Ecol. Eng., 66 (2014) 82–90.
  27. G.A. Di Luca, M.A. Maine, M.M. Mufarrege, H.R. Hadad, C.A. Bonetto, Influence of Typha domingensis in the removal of high P concentrations from water, Chemosphere, 138 (2015) 405–411.
  28. M.E. Baldizon, R. Dolmus, J. Quintana, Y. Navarro, M. Donze, Comparison of conventional and macrophyte-based systems for the treatment of domestic wastewater, Water Sci. Technol., 45 (2002) 111–116.
  29. C.S.C. Calheiros, A.O.S.S. Rangel, P.M.L. Castro, Constructed wetland systems vegetated with different plants applied to the treatment of tannery wastewater, Water Res., 41 (2007) 1790–1798.
  30. L. Marchand, M. Mench, D.L. Jacob, M.L. Otte, Metal and metalloid removal in constructed wetlands, with emphasis on the importance of plants and standardized measurements: a review, Environ. Pollut., 158 (2010) 3447–3461.
  31. R. Menon, M.M. Holland, Phosphorus retention in constructed wetlands vegetated with Juncus effusus, Carex lurida, and Dichanthelium acuminatum var. acuminatum, Water Air Soil Pollut., 224 (2013) 1–11.
  32. J.T. Kao, J.E. Titus, W.-X. Zhu, Differential nitrogen and phosphorus retention by five wetland plant species, Wetlands, 23 (2003) 979–987.
  33. H. Zhang, Y. Tian, S. Cui, L. Zhang, X. Zhong, Y. Xiong, Influence of macrophytes on phosphorus fractionation in surface sediments in a constructed wetland: insight from sediment compositions, Ecol. Eng., 97 (2016) 400–409.
  34. APHA, Standard Methods for the Examination on of Water and Wastewater, 18th ed., American Public Health Association, Washington, D.C., USA, 2005.
  35. G.M. Pierzynski, Methods of Phosphorus Analysis for Soils, Sediments, Residuals, and Waters, 1st ed., North Carolina State University, Raleigh, Manhattan, 2000.
  36. S.D. Bao, Soil and agricultural chemistry analysis, China Agricultural Press, Beijing, 2000, pp. 355–356.
  37. D. Mazumder, Scope of BOD, nitrogen and phosphorous removal through plant–soil interaction in the wetland, Int. J. Environ. Chem. Ecol. Geol. Geophys. Eng., 7 (2013) 82–91.
  38. E.J. Dunne, M.F. Coveney, V.R. Hoge, R. Conrow, R. Naleway, E.F. Lowe, L.E. Battoe, Y.P. Wang, Phosphorus removal performance of a large-scale constructed treatment wetland receiving eutrophic lake water, Ecol. Eng., 79 (2015) 132–142.
  39. A.C. Redfield, The biological control of chemical factors in the environment, Am. Sci., 46 (1958) 230A, 205–221.
  40. C.A. Klausmeier, E. Litchman, T. Daufresne, S.A. Levin, Optimal nitrogen-to-phosphorus stoichiometry of phytoplankton, Nature, 429 (2004) 171–174.
  41. Y.E. Sallade, J.T. Sims, Phosphorus transformations in the sediments of Delaware’s agricultural drainageways: I. Phosphorus forms and sorption, J. Environ. Qual., 26 (1997) 1571–1579.
  42. D.C. Ribeiro, G. Martins, R. Nogueira, J.V. Cruz, A.G. Brito, Phosphorus fractionation in volcanic lake sediments (Azores – Portugal), Chemosphere, 70 (2008) 1256–1263.
  43. X. Tang, M. Wu, X. Dai, P. Chai, Phosphorus storage dynamics and adsorption characteristics for sediment from a drinking water source reservoir and its relation with sediment compositions, Ecol. Eng., 64 (2014) 276–284.
  44. J.P. Ondok, Estimation of Seasonal Growth of Underground Biomass, D. Dykyjová, J. Kvet, Eds., Pond Littoral Ecosystems, (1978).
  45. T. Asaeda, P. Hietz, N. Tanaka, S. Karunaratne, et al., Seasonal fluctuations in live and dead biomass of Phragmites australis as described by a growth and decomposition model: implications of duration of aerobic conditions for litter mineralization and sedimentation, Aquat. Bot., 73 (2002) 223–239.
  46. C.H. Sim, M.K. Yusoff, B. Shutes, S.C. Ho, M. Mansor, Nutrient removal in a pilot and full scale constructed wetland, Putrajaya city, Malaysia, J. Environ. Manage., 88 (2008) 307–317.
  47. R. Carignan, An empirical model to estimate the relative importance of roots in phosphorus uptake by aquatic macrophytes, Can. J. Fish. Aquat. Sci., 39 (1982) 243–247.
  48. M.L. Jaynes, S.R. Carpenter, Effects of vascular and nonvascular macrophytes on sediment redox and solute dynamics, Ecology, 67 (1986) 875–882.
  49. J. Liu, H. Wang, H. Yang, Y. Ma, O. Cai, Detection of phosphorus species in sediments of artificial landscape lakes in China by fractionation and phosphorus-31 nuclear magnetic resonance spectroscopy, Environ. Pollut., 157 (2009) 49–56.