References

  1. A.M. Montebello, M. Fernández, F. Almenglo, M. Ramírez, D. Cantero, M. Baeza, D. Gabriel, Simultaneous methylmercaptan and hydrogen sulfide removal in the desulfurization of biogas in aerobic and anoxic biotrickling filters, Chem. Eng. J., 200 (2012) 237–246.
  2. C. Rattanapan, P. Boonsawang, D. Kantachote, Removal of H2S in down-flow GAC biofiltration using sulfide oxidizing bacteria from concentrated latex wastewater, Bioresour. Technol., 100 (2009) 125–130.
  3. Q. Chen, J. Wang, X. Liu, Z. Li, W. Qiao, D. Long, L. Ling, Structure-dependent catalytic oxidation of H2S over Na2CO3 impregnated carbon aerogels, Microporous Mesoporous Mater., 142 (2011) 641–648.
  4. W.P. Cheng, J.Z. Zhao, J.G. Yang, MgAlFeCu mixed oxides for SO2 removal capacity: influence of the copper and aluminum incorporation method, Catal. Commun., 23 (2012) 1–4.
  5. H. Kimura, Hydrogen Sulfide and Its Therapeutic Applications, Springer, 2013.
  6. J. Guo, Y. Luo, A.C. Lua, R.-a. Chi, Y.-l. Chen, X.-t. Bao, S.-x. Xiang, Adsorption of hydrogen sulphide (H2S) by activated carbons derived from oil-palm shell, Carbon, 45 (2007) 330–336.
  7. S. Ma, A. Noble, D. Butcher, R.E. Trouwborst, G.W. Luther, Removal of H2S via an iron catalytic cycle and iron sulfide precipitation in the water column of dead end tributaries, Estuarine Coastal Shelf Sci., 70 (2006) 461–472.
  8. R.H.O. Montes, E.M. Richter, R.A.A. Munoz, Low-potential reduction of sulfite at a ruthenium-oxide hexacyanoferrate modified electrode, Electrochem. Commun., 21 (2012) 26–29.
  9. N. Diez, P. Alvarez, M. Granda, C. Blanco, G. Gryglewicz, I. Wróbel-Iwaniec, A. Sliwak, J. Machnikowski, R. Menendez, Tailoring micro-mesoporosity in activated carbon fibers to enhance SO₂ catalytic oxidation, J. Colloid Interface Sci., 428 (2014) 36–40.
  10. L. Zhao, X. Li, Z. Qu, Q. Zhao, S. Liu, X. Hu, The NiAl mixed oxides: the relation between basicity and SO2 removal capacity, Sep. Purif. Technol., 80 (2011) 345–350.
  11. A. Kumar, G. Hegde, S.A.B.A. Manaf, Z. Ngaini, K.V. Sharma, Catalyst free silica templated porous carbon nanoparticles from bio-waste materials, Chem. Commun., 50 (2014) 12702–12705.
  12. G.A.M. Ali, S.A.B.A. Manaf, A. Kumar, K.F. Chong, G. Hegde, High performance supercapacitor using catalysis free porous carbon nanoparticles, J. Phys. D: Appl. Phys., 47 (2014) 495307–495313.
  13. G.A.M. Ali, S.A.A. Manaf, D. A, K.F. Chong, G. Hegde, Superior supercapacitive performance in porous nanocarbons, J. Energy Chem., 25 (2016) 734–739.
  14. Z. Hu, E.F. Vansant, Carbon molecular sieves produced from walnut shell, Carbon, 33 (1995) 561–567.
  15. T.E. Rufford, D. Hulicova-Jurcakova, K. Khosla, Z. Zhu, G.Q. Lu, Microstructure and electrochemical double-layer capacitance of carbon electrodes prepared by zinc chloride activation of sugar cane bagasse, J. Power Sources, 195 (2010) 912–918.
  16. A. Marcilla, S. Garcıa-Garcıa, M. Asensio, J.A. Conesa, Influence of thermal treatment regime on the density and reactivity of activated carbons from almond shells, Carbon, 38 (2000) 429–440.
  17. M. Kazemipour, M. Ansari, S. Tajrobehkar, M. Majdzadeh, H.R. Kermani, Removal of lead, cadmium, zinc, and copper from industrial wastewater by carbon developed from walnut, hazelnut, almond, pistachio shell, and apricot stone, J. Hazard. Mater., 150 (2008) 322–327.
  18. K. Yang, J. Peng, C. Srinivasakannan, L. Zhang, H. Xia, X. Duan, Preparation of high surface area activated carbon from coconut shells using microwave heating, Bioresour. Technol., 101 (2010) 6163–6169.
  19. A.C. Martins, O. Pezoti, A.L. Cazetta, K.C. Bedin, D.A.S. Yamazaki, G.F.G. Bandoch, T. Asefa, J.V. Visentainer, V.C. Almeida, Removal of tetracycline by NaOH-activated carbon produced from macadamia nut shells: kinetic and equilibrium studies, Chem. Eng. J., 260 (2015) 291–299.
  20. R. Farma, M. Deraman, A. Awitdrus, I.A. Talib, E. Taer, N.H. Basri, J.G. Manjunatha, M.M. Ishak, B.N.M. Dollah, S.A. Hashmi, Preparation of highly porous binderless activated carbon electrodes from fibres of oil palm empty fruit bunches for application in supercapacitors, Bioresour. Technol., 132 (2013) 254–261.
  21. P. Gao, Z.-h. Liu, G. Xue, B. Han, M.-h. Zhou, Preparation and characterization of activated carbon produced from rice straw by (NH4)2HPO4 activation, Bioresour. Technol., 102 (2011) 3645–3648.
  22. K.Y. Foo, B.H. Hameed, Preparation and characterization of activated carbon from sunflower seed oil residue via microwave assisted K2CO3 activation, Bioresour. Technol., 102 (2011) 9794–9799.
  23. M. Chen, X. Kang, T. Wumaier, J. Dou, B. Gao, Y. Han, G. Xu, Z. Liu, L. Zhang, Preparation of activated carbon from cotton stalk and its application in supercapacitor, J. Solid State Electrochem., 17 (2013) 1005–1012.
  24. M.L. Sekirifa, M. Hadj-Mahammed, S. Pallier, L. Baameur, D. Richard, A.H. Al-Dujaili, Preparation and characterization of an activated carbon from a date stones variety by physical activation with carbon dioxide, J. Anal. Appl. Pyrolysis, 99 (2013) 155–160.
  25. A.C. Lua, J. Guo, Activated carbon prepared from oil palm stone by one-step CO2 activation for gaseous pollutant removal, Carbon, 38 (2000) 1089–1097.
  26. I.I. Misnon, N.K.M. Zain, R.A. Aziz, B. Vidyadharan, R. Jose, Electrochemical properties of carbon from oil palm kernel shell for high performance supercapacitors, Electrochim. Acta, 174 (2015) 78–86.
  27. D. Lozano-Castelló, J.M. Calo, D. Cazorla-Amorós, A. Linares-Solano, Carbon activation with KOH as explored by temperature programmed techniques, and the effects of hydrogen, Carbon, 45 (2007) 2529–2536.
  28. F. Caturla, M. Molina-Sabio, F. Rodríguez-Reinoso, Preparation of activated carbon by chemical activation with ZnCl2, Carbon, 29 (1991) 999–1007.
  29. A. Ahmadpour, D.D. Do, The preparation of active carbons from coal by chemical and physical activation, Carbon, 34 (1996) 471–479.
  30. M.J. Ahmed, S.K. Theydan, Physical and chemical characteristics of activated carbon prepared by pyrolysis of chemically treated date stones and its ability to adsorb organics, Powder Technol., 229 (2012) 237–245.
  31. G.G. Stavropoulos, A.A. Zabaniotou, Production and characterization of activated carbons from olive-seed waste residue, Microporous Mesoporous Mater., 82 (2005) 79–85.
  32. S. Asaoka, T. Yamamoto, S. Kondo, S. Hayakawa, Removal of hydrogen sulfide using crushed oyster shell from pore water to remediate organically enriched coastal marine sediments, Bioresour. Technol., 100 (2009) 4127–4132.
  33. P.R. Silva, H.A. Ponte, M.J.J.S. Ponte, N.M.S. Kaminari, Development of a new electrochemical methodology at carbon steel/Na2S system for corrosion monitoring in oil refineries, J. Appl. Electrochem., 41 (2011) 317–320.
  34. I. Jacukowicz-Sobala, Ł.J. Wilk, K. Drabent, E. Kociołek-Balawejder, Synthesis and characterization of hybrid materials containing iron oxide for removal of sulfides from water, J. Colloid Interface Sci., 460 (2015) 154–163.
  35. I.B. Hariz, L. Monser, Sulfide removal from petroleum refinery wastewater by adsorption on chemically modified activated carbon, Int. Water Technol. J., 4 (2014) 264–267.
  36. S. Agarwal, H. Sadegh, M. Monajjemi, A.S. Hamdy, G.A.M. Ali, A.O.H. Memar, R. Shahryari-Ghoshekandi, I. Tyagi, V.K. Gupta, Efficient removal of toxic bromothymol blue and methylene blue from wastewater by polyvinyl alcohol, J. Mol. Liq., 218 (2016) 191–197.
  37. O.A. Habeeb, K. Ramesh, G.A.M. Ali, R.M. Yunus, Experimental design technique on removal of hydrogen sulfide using CaOeggshells dispersed onto palm kernel shell activated carbon: experiment, optimization, equilibrium and kinetic studies, J. Wuhan Univ. Technol. Mater. Sci. Ed., 32 (2017) 305–320.
  38. S.J. Allen, G. Mckay, J.F. Porter, Adsorption isotherm models for basic dye adsorption by peat in single and binary component systems, J. Colloid Interface Sci., 280 (2004) 322–333.
  39. G. Limousin, J.-P. Gaudet, L. Charlet, S. Szenknect, V. Barthes, M. Krimissa, Sorption isotherms: a review on physical bases, modeling and measurement, Appl. Geochem., 22 (2007) 249–275.
  40. H.H. Abdel Ghafar, G.A.M. Ali, O.A. Fouad, S.A. Makhlouf, Enhancement of adsorption efficiency of methylene blue on Co3O4/SiO2 nanocomposite, Desal. Water Treat., 53 (2015) 2980–2989.
  41. O.S. Bello, I.A. Adeogun, J.C. Ajaelu, E.O. Fehintola, Adsorption of methylene blue onto activated carbon derived from periwinkle shells: kinetics and equilibrium studies, Chem. Ecol., 24 (2008) 285–295.
  42. V.K. Gupta, S. Agarwal, H. Sadegh, G.A.M. Ali, A.K. Bharti, A.S. Hamdy, Facile route synthesis of novel graphene oxide-β-cyclodextrin nanocomposite and its application as adsorbent for removal of toxic bisphenol A from the aqueous phase, J. Mol. Liq., 237 (2017) 466–472.
  43. F. Haghseresht, G.Q. Lu, Adsorption characteristics of phenolic compounds onto coal-reject-derived adsorbents, Energy Fuels, 12 (1998) 1100–1107.
  44. K.Y. Foo, B.H. Hameed, Insights into the modeling of adsorption isotherm systems, Chem. Eng. J., 156 (2010) 2–10.
  45. M. Hosseini, S.F.L. Mertens, M. Ghorbani, M.R. Arshadi, Asymmetrical Schiff bases as inhibitors of mild steel corrosion in sulphuric acid media, Mater. Chem. Phys., 78 (2003) 800–808.
  46. T.A.S. Elnsar, M.H. Soliman, M.A.-E.-A.A. Ayash, Modified hydroxyapatite adsorbent for removal of iron dissolved in water wells in Sohag, Egypt, Chem. Adv. Mater., 2 (2017) 1–13.
  47. A. Günay, E. Arslankaya, I. Tosun, Lead removal from aqueous solution by natural and pretreated clinoptilolite: adsorption equilibrium and kinetics, J. Hazard. Mater., 146 (2007) 362–371.
  48. A. Dada, A. Olalekan, A. Olatunya, O. Dada, Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherms studies of equilibrium sorption of Zn2+ unto phosphoric acid modified rice husk, J. Appl. Chem., 3 (2012) 38–45.
  49. H. Sadegh, G.A.M. Ali, V.K. Gupta, A.S.H. Makhlouf, R. Shahryari-ghoshekandi, M.N. Nadagouda, M. Sillanpää, E. Megiel, The role of nanomaterials as effective adsorbents and their applications in wastewater treatment, J. Nanostruct. Chem., 7 (2017) 1–14.
  50. Y.-S. Ho, G. McKay, Sorption of dye from aqueous solution by peat, Chem. Eng. J., 70 (1998) 115–124.
  51. H. Cherifi, B. Fatiha, H. Salah, Kinetic studies on the adsorption of methylene blue onto vegetal fiber activated carbons, Appl. Surf. Sci., 282 (2013) 52–59.
  52. D. Das, D.P. Samal, B. Meikap, Preparation of activated carbon from green coconut shell and its characterization, J. Chem. Eng. Process Technol., 2015 (2015).
  53. C. Pongener, D. Kibami, K.S. Rao, R.L. Goswamee, D. Sinha, Synthesis and characterization of activated carbon from the biowaste of the plant Manihot esculenta, Chem. Sci. Trans., 4 (2015) 59–68.
  54. A. Kar, S. Kundu, A. Patra, Photocatalytic properties of semiconductor SnO2/CdS heterostructure nanocrystals, RSC Adv., 2 (2012) 10222–10230.
  55. Y.-W. Lee, J.-W. Park, S.-J. Jun, D.-K. Choi, J.-E. Yie, NOx adsorption–temperature programmed desorption and surface molecular ions distribution by activated carbon with chemical modification, Carbon, 42 (2004) 59–69.
  56. O.A. Fouad, S.A. Makhlouf, G.A.M. Ali, A.Y. El-Sayed, Cobalt/ silica nanocomposite via thermal calcination-reduction of gel precursors, Mater. Chem. Phys., 128 (2011) 70–76.
  57. O.A. Fouad, G.A.M. Ali, M.A.I. El-Erian, S.A. Makhlouf, Humidity sensing properties of cobalt oxide/silica nanocomposites prepared via sol-gel and related routes, Nano, 7 (2012) 1250038–1250049.
  58. G.A.M. Ali, O.A. Fouad, S.A. Makhlouf, Structural, optical and electrical properties of sol-gel prepared mesoporous Co3O4/SiO2 nanocomposites, J. Alloys Compd., 579 (2013) 606–611.
  59. K.Y. Foo, B.H. Hameed, Microwave-assisted preparation and adsorption performance of activated carbon from biodiesel industry solid reside: influence of operational parameters, Bioresour. Technol., 103 (2012) 398–404.
  60. M. Florent, R. Wallace, T.J. Bandosz, Removal of hydrogen sulfide at ambient conditions on cadmium/GO-based composite adsorbents, J. Colloid Interface Sci., 448 (2015) 573–581.
  61. X. Xu, X. Cao, L. Zhao, T. Sun, Comparison of sewage sludgeand pig manure-derived biochars for hydrogen sulfide removal, Chemosphere, 111 (2014) 296–303.
  62. M.S. El-Geundi, Homogeneous surface diffusion model for the adsorption of basic dyestuffs onto natural clay in batch adsorbers, Adsorpt. Sci. Technol., 8 (1991) 217–225.
  63. J. Kazmierczak-Razna, B. Gralak-Podemska, P. Nowicki, R. Pietrzak, The use of microwave radiation for obtaining activated carbons from sawdust and their potential application in removal of NO2 and H2S, Chem. Eng. J., 269 (2015) 352–358.
  64. S. Asaoka, H. Okamura, R. Morisawa, H. Murakami, K. Fukushi, T. Okajima, M. Katayama, Y. Inada, C. Yogi, T. Ohta, Removal of hydrogen sulfide using carbonated steel slag, Chem. Eng. J., 228 (2013) 843–849.
  65. Y. Xiao, S. Wang, D. Wu, Q. Yuan, Experimental and simulation study of hydrogen sulfide adsorption on impregnated activated carbon under anaerobic conditions, J. Hazard. Mater., 153 (2008) 1193–1200.
  66. R. Wallace, M. Seredych, P. Zhang, T.J. Bandosz, Municipal waste conversion to hydrogen sulfide adsorbents: investigation of the synergistic effects of sewage sludge/fish waste mixture, Chem. Eng. J., 237 (2014) 88–94.
  67. M. Seredych, T.J. Bandosz, Adsorption of hydrogen sulfide on graphite derived materials modified by incorporation of nitrogen, Mater. Chem. Phys., 113 (2009) 946–952.
  68. D. Nguyen-Thanh, T.J. Bandosz, Activated carbons with metal containing bentonite binders as adsorbents of hydrogen sulfide, Carbon, 43 (2005) 359–367.
  69. M. Seredych, C. Portet, Y. Gogotsi, T.J. Bandosz, Nitrogen modified carbide-derived carbons as adsorbents of hydrogen sulfide, J. Colloid Interface Sci., 330 (2009) 60–66.
  70. A. Bagreev, T.J. Bandosz, H2S adsorption/oxidation on unmodified activated carbons: importance of prehumidification, Carbon, 39 (2001) 2303–2311.
  71. A. Bagreev, J.A. Menendez, I. Dukhno, Y. Tarasenko, T.J. Bandosz, Bituminous coal-based activated carbons modified with nitrogen as adsorbents of hydrogen sulfide, Carbon, 42 (2004) 469–476.
  72. S. Montoya-Suarez, F. Colpas-Castillo, E. Meza-Fuentes, J. Rodríguez-Ruiz, R. Fernandez-Maestre, Activated carbons from waste of oil-palm kernel shells, sawdust and tannery leather scraps and application to chromium (VI), phenol, and methylene blue dye adsorption, Water Sci. Technol., 73 (2016) 21–27.
  73. A. Jumasiah, T.G. Chuah, J. Gimbon, T.S.Y. Choong, I. Azni, Adsorption of basic dye onto palm kernel shell activated carbon: sorption equilibrium and kinetics studies, Desalination, 186 (2005) 57–64.
  74. Y.B. Onundi, A.A. Mamun, M.F.A. Khatib, Y.M. Ahmed, Adsorption of copper, nickel and lead ions from synthetic semiconductor industrial wastewater by palm shell activated carbon, Int. J. Environ. Sci. Technol., 7 (2010) 751–758.