References
- A.M. Montebello, M. Fernández, F. Almenglo, M. Ramírez, D.
Cantero, M. Baeza, D. Gabriel, Simultaneous methylmercaptan
and hydrogen sulfide removal in the desulfurization of biogas
in aerobic and anoxic biotrickling filters, Chem. Eng. J., 200
(2012) 237–246.
- C. Rattanapan, P. Boonsawang, D. Kantachote, Removal of H2S
in down-flow GAC biofiltration using sulfide oxidizing bacteria
from concentrated latex wastewater, Bioresour. Technol., 100
(2009) 125–130.
- Q. Chen, J. Wang, X. Liu, Z. Li, W. Qiao, D. Long, L. Ling,
Structure-dependent catalytic oxidation of H2S over Na2CO3 impregnated carbon aerogels, Microporous Mesoporous
Mater., 142 (2011) 641–648.
- W.P. Cheng, J.Z. Zhao, J.G. Yang, MgAlFeCu mixed oxides for
SO2 removal capacity: influence of the copper and aluminum
incorporation method, Catal. Commun., 23 (2012) 1–4.
- H. Kimura, Hydrogen Sulfide and Its Therapeutic Applications,
Springer, 2013.
- J. Guo, Y. Luo, A.C. Lua, R.-a. Chi, Y.-l. Chen, X.-t. Bao, S.-x.
Xiang, Adsorption of hydrogen sulphide (H2S) by activated
carbons derived from oil-palm shell, Carbon, 45 (2007) 330–336.
- S. Ma, A. Noble, D. Butcher, R.E. Trouwborst, G.W. Luther,
Removal of H2S via an iron catalytic cycle and iron sulfide
precipitation in the water column of dead end tributaries,
Estuarine Coastal Shelf Sci., 70 (2006) 461–472.
- R.H.O. Montes, E.M. Richter, R.A.A. Munoz, Low-potential
reduction of sulfite at a ruthenium-oxide hexacyanoferrate
modified electrode, Electrochem. Commun., 21 (2012) 26–29.
- N. Diez, P. Alvarez, M. Granda, C. Blanco, G. Gryglewicz, I.
Wróbel-Iwaniec, A. Sliwak, J. Machnikowski, R. Menendez,
Tailoring micro-mesoporosity in activated carbon fibers to
enhance SO₂ catalytic oxidation, J. Colloid Interface Sci., 428
(2014) 36–40.
- L. Zhao, X. Li, Z. Qu, Q. Zhao, S. Liu, X. Hu, The NiAl mixed
oxides: the relation between basicity and SO2 removal capacity,
Sep. Purif. Technol., 80 (2011) 345–350.
- A. Kumar, G. Hegde, S.A.B.A. Manaf, Z. Ngaini, K.V. Sharma,
Catalyst free silica templated porous carbon nanoparticles from
bio-waste materials, Chem. Commun., 50 (2014) 12702–12705.
- G.A.M. Ali, S.A.B.A. Manaf, A. Kumar, K.F. Chong, G. Hegde,
High performance supercapacitor using catalysis free porous
carbon nanoparticles, J. Phys. D: Appl. Phys., 47 (2014)
495307–495313.
- G.A.M. Ali, S.A.A. Manaf, D. A, K.F. Chong, G. Hegde, Superior
supercapacitive performance in porous nanocarbons, J. Energy
Chem., 25 (2016) 734–739.
- Z. Hu, E.F. Vansant, Carbon molecular sieves produced from
walnut shell, Carbon, 33 (1995) 561–567.
- T.E. Rufford, D. Hulicova-Jurcakova, K. Khosla, Z. Zhu,
G.Q. Lu, Microstructure and electrochemical double-layer
capacitance of carbon electrodes prepared by zinc chloride
activation of sugar cane bagasse, J. Power Sources, 195 (2010)
912–918.
- A. Marcilla, S. Garcıa-Garcıa, M. Asensio, J.A. Conesa, Influence
of thermal treatment regime on the density and reactivity
of activated carbons from almond shells, Carbon, 38 (2000)
429–440.
- M. Kazemipour, M. Ansari, S. Tajrobehkar, M. Majdzadeh,
H.R. Kermani, Removal of lead, cadmium, zinc, and copper
from industrial wastewater by carbon developed from walnut,
hazelnut, almond, pistachio shell, and apricot stone, J. Hazard.
Mater., 150 (2008) 322–327.
- K. Yang, J. Peng, C. Srinivasakannan, L. Zhang, H. Xia, X. Duan,
Preparation of high surface area activated carbon from coconut
shells using microwave heating, Bioresour. Technol., 101 (2010)
6163–6169.
- A.C. Martins, O. Pezoti, A.L. Cazetta, K.C. Bedin, D.A.S.
Yamazaki, G.F.G. Bandoch, T. Asefa, J.V. Visentainer, V.C.
Almeida, Removal of tetracycline by NaOH-activated carbon
produced from macadamia nut shells: kinetic and equilibrium
studies, Chem. Eng. J., 260 (2015) 291–299.
- R. Farma, M. Deraman, A. Awitdrus, I.A. Talib, E. Taer, N.H.
Basri, J.G. Manjunatha, M.M. Ishak, B.N.M. Dollah, S.A.
Hashmi, Preparation of highly porous binderless activated
carbon electrodes from fibres of oil palm empty fruit bunches
for application in supercapacitors, Bioresour. Technol., 132
(2013) 254–261.
- P. Gao, Z.-h. Liu, G. Xue, B. Han, M.-h. Zhou, Preparation and
characterization of activated carbon produced from rice straw
by (NH4)2HPO4 activation, Bioresour. Technol., 102 (2011)
3645–3648.
- K.Y. Foo, B.H. Hameed, Preparation and characterization of
activated carbon from sunflower seed oil residue via microwave
assisted K2CO3 activation, Bioresour. Technol., 102 (2011)
9794–9799.
- M. Chen, X. Kang, T. Wumaier, J. Dou, B. Gao, Y. Han, G. Xu, Z.
Liu, L. Zhang, Preparation of activated carbon from cotton stalk
and its application in supercapacitor, J. Solid State Electrochem.,
17 (2013) 1005–1012.
- M.L. Sekirifa, M. Hadj-Mahammed, S. Pallier, L. Baameur, D.
Richard, A.H. Al-Dujaili, Preparation and characterization
of an activated carbon from a date stones variety by physical
activation with carbon dioxide, J. Anal. Appl. Pyrolysis, 99
(2013) 155–160.
- A.C. Lua, J. Guo, Activated carbon prepared from oil palm
stone by one-step CO2 activation for gaseous pollutant removal,
Carbon, 38 (2000) 1089–1097.
- I.I. Misnon, N.K.M. Zain, R.A. Aziz, B. Vidyadharan, R. Jose,
Electrochemical properties of carbon from oil palm kernel shell
for high performance supercapacitors, Electrochim. Acta, 174
(2015) 78–86.
- D. Lozano-Castelló, J.M. Calo, D. Cazorla-Amorós, A. Linares-Solano, Carbon activation with KOH as explored by temperature
programmed techniques, and the effects of hydrogen, Carbon,
45 (2007) 2529–2536.
- F. Caturla, M. Molina-Sabio, F. Rodríguez-Reinoso, Preparation
of activated carbon by chemical activation with ZnCl2, Carbon,
29 (1991) 999–1007.
- A. Ahmadpour, D.D. Do, The preparation of active carbons
from coal by chemical and physical activation, Carbon, 34
(1996) 471–479.
- M.J. Ahmed, S.K. Theydan, Physical and chemical characteristics
of activated carbon prepared by pyrolysis of chemically treated
date stones and its ability to adsorb organics, Powder Technol.,
229 (2012) 237–245.
- G.G. Stavropoulos, A.A. Zabaniotou, Production and
characterization of activated carbons from olive-seed waste
residue, Microporous Mesoporous Mater., 82 (2005) 79–85.
- S. Asaoka, T. Yamamoto, S. Kondo, S. Hayakawa, Removal of
hydrogen sulfide using crushed oyster shell from pore water
to remediate organically enriched coastal marine sediments,
Bioresour. Technol., 100 (2009) 4127–4132.
- P.R. Silva, H.A. Ponte, M.J.J.S. Ponte, N.M.S. Kaminari,
Development of a new electrochemical methodology at carbon
steel/Na2S system for corrosion monitoring in oil refineries, J.
Appl. Electrochem., 41 (2011) 317–320.
- I. Jacukowicz-Sobala, Ł.J. Wilk, K. Drabent, E. Kociołek-Balawejder, Synthesis and characterization of hybrid materials
containing iron oxide for removal of sulfides from water, J.
Colloid Interface Sci., 460 (2015) 154–163.
- I.B. Hariz, L. Monser, Sulfide removal from petroleum refinery
wastewater by adsorption on chemically modified activated
carbon, Int. Water Technol. J., 4 (2014) 264–267.
- S. Agarwal, H. Sadegh, M. Monajjemi, A.S. Hamdy, G.A.M. Ali,
A.O.H. Memar, R. Shahryari-Ghoshekandi, I. Tyagi, V.K. Gupta,
Efficient removal of toxic bromothymol blue and methylene
blue from wastewater by polyvinyl alcohol, J. Mol. Liq., 218
(2016) 191–197.
- O.A. Habeeb, K. Ramesh, G.A.M. Ali, R.M. Yunus, Experimental
design technique on removal of hydrogen sulfide using CaOeggshells
dispersed onto palm kernel shell activated carbon:
experiment, optimization, equilibrium and kinetic studies, J.
Wuhan Univ. Technol. Mater. Sci. Ed., 32 (2017) 305–320.
- S.J. Allen, G. Mckay, J.F. Porter, Adsorption isotherm models for
basic dye adsorption by peat in single and binary component
systems, J. Colloid Interface Sci., 280 (2004) 322–333.
- G. Limousin, J.-P. Gaudet, L. Charlet, S. Szenknect, V. Barthes,
M. Krimissa, Sorption isotherms: a review on physical bases,
modeling and measurement, Appl. Geochem., 22 (2007)
249–275.
- H.H. Abdel Ghafar, G.A.M. Ali, O.A. Fouad, S.A. Makhlouf,
Enhancement of adsorption efficiency of methylene blue on
Co3O4/SiO2 nanocomposite, Desal. Water Treat., 53 (2015)
2980–2989.
- O.S. Bello, I.A. Adeogun, J.C. Ajaelu, E.O. Fehintola, Adsorption
of methylene blue onto activated carbon derived from
periwinkle shells: kinetics and equilibrium studies, Chem.
Ecol., 24 (2008) 285–295.
- V.K. Gupta, S. Agarwal, H. Sadegh, G.A.M. Ali, A.K. Bharti,
A.S. Hamdy, Facile route synthesis of novel graphene oxide-β-cyclodextrin nanocomposite and its application as adsorbent
for removal of toxic bisphenol A from the aqueous phase, J. Mol.
Liq., 237 (2017) 466–472.
- F. Haghseresht, G.Q. Lu, Adsorption characteristics of phenolic
compounds onto coal-reject-derived adsorbents, Energy Fuels,
12 (1998) 1100–1107.
- K.Y. Foo, B.H. Hameed, Insights into the modeling of adsorption
isotherm systems, Chem. Eng. J., 156 (2010) 2–10.
- M. Hosseini, S.F.L. Mertens, M. Ghorbani, M.R. Arshadi,
Asymmetrical Schiff bases as inhibitors of mild steel corrosion
in sulphuric acid media, Mater. Chem. Phys., 78 (2003) 800–808.
- T.A.S. Elnsar, M.H. Soliman, M.A.-E.-A.A. Ayash, Modified
hydroxyapatite adsorbent for removal of iron dissolved in
water wells in Sohag, Egypt, Chem. Adv. Mater., 2 (2017) 1–13.
- A. Günay, E. Arslankaya, I. Tosun, Lead removal from aqueous
solution by natural and pretreated clinoptilolite: adsorption
equilibrium and kinetics, J. Hazard. Mater., 146 (2007) 362–371.
- A. Dada, A. Olalekan, A. Olatunya, O. Dada, Langmuir,
Freundlich, Temkin and Dubinin–Radushkevich isotherms
studies of equilibrium sorption of Zn2+ unto phosphoric acid
modified rice husk, J. Appl. Chem., 3 (2012) 38–45.
- H. Sadegh, G.A.M. Ali, V.K. Gupta, A.S.H. Makhlouf, R.
Shahryari-ghoshekandi, M.N. Nadagouda, M. Sillanpää, E.
Megiel, The role of nanomaterials as effective adsorbents and
their applications in wastewater treatment, J. Nanostruct.
Chem., 7 (2017) 1–14.
- Y.-S. Ho, G. McKay, Sorption of dye from aqueous solution by
peat, Chem. Eng. J., 70 (1998) 115–124.
- H. Cherifi, B. Fatiha, H. Salah, Kinetic studies on the adsorption
of methylene blue onto vegetal fiber activated carbons, Appl.
Surf. Sci., 282 (2013) 52–59.
- D. Das, D.P. Samal, B. Meikap, Preparation of activated carbon
from green coconut shell and its characterization, J. Chem. Eng.
Process Technol., 2015 (2015).
- C. Pongener, D. Kibami, K.S. Rao, R.L. Goswamee, D. Sinha,
Synthesis and characterization of activated carbon from the
biowaste of the plant Manihot esculenta, Chem. Sci. Trans., 4
(2015) 59–68.
- A. Kar, S. Kundu, A. Patra, Photocatalytic properties of
semiconductor SnO2/CdS heterostructure nanocrystals, RSC
Adv., 2 (2012) 10222–10230.
- Y.-W. Lee, J.-W. Park, S.-J. Jun, D.-K. Choi, J.-E. Yie, NOx adsorption–temperature programmed desorption and surface
molecular ions distribution by activated carbon with chemical
modification, Carbon, 42 (2004) 59–69.
- O.A. Fouad, S.A. Makhlouf, G.A.M. Ali, A.Y. El-Sayed, Cobalt/
silica nanocomposite via thermal calcination-reduction of gel
precursors, Mater. Chem. Phys., 128 (2011) 70–76.
- O.A. Fouad, G.A.M. Ali, M.A.I. El-Erian, S.A. Makhlouf,
Humidity sensing properties of cobalt oxide/silica
nanocomposites prepared via sol-gel and related routes, Nano,
7 (2012) 1250038–1250049.
- G.A.M. Ali, O.A. Fouad, S.A. Makhlouf, Structural, optical and
electrical properties of sol-gel prepared mesoporous Co3O4/SiO2 nanocomposites, J. Alloys Compd., 579 (2013) 606–611.
- K.Y. Foo, B.H. Hameed, Microwave-assisted preparation and
adsorption performance of activated carbon from biodiesel
industry solid reside: influence of operational parameters,
Bioresour. Technol., 103 (2012) 398–404.
- M. Florent, R. Wallace, T.J. Bandosz, Removal of hydrogen
sulfide at ambient conditions on cadmium/GO-based composite
adsorbents, J. Colloid Interface Sci., 448 (2015) 573–581.
- X. Xu, X. Cao, L. Zhao, T. Sun, Comparison of sewage sludgeand
pig manure-derived biochars for hydrogen sulfide removal,
Chemosphere, 111 (2014) 296–303.
- M.S. El-Geundi, Homogeneous surface diffusion model for
the adsorption of basic dyestuffs onto natural clay in batch
adsorbers, Adsorpt. Sci. Technol., 8 (1991) 217–225.
- J. Kazmierczak-Razna, B. Gralak-Podemska, P. Nowicki,
R. Pietrzak, The use of microwave radiation for obtaining
activated carbons from sawdust and their potential application
in removal of NO2 and H2S, Chem. Eng. J., 269 (2015) 352–358.
- S. Asaoka, H. Okamura, R. Morisawa, H. Murakami, K. Fukushi,
T. Okajima, M. Katayama, Y. Inada, C. Yogi, T. Ohta, Removal of
hydrogen sulfide using carbonated steel slag, Chem. Eng. J., 228
(2013) 843–849.
- Y. Xiao, S. Wang, D. Wu, Q. Yuan, Experimental and simulation
study of hydrogen sulfide adsorption on impregnated activated
carbon under anaerobic conditions, J. Hazard. Mater., 153 (2008)
1193–1200.
- R. Wallace, M. Seredych, P. Zhang, T.J. Bandosz, Municipal
waste conversion to hydrogen sulfide adsorbents: investigation
of the synergistic effects of sewage sludge/fish waste mixture,
Chem. Eng. J., 237 (2014) 88–94.
- M. Seredych, T.J. Bandosz, Adsorption of hydrogen sulfide
on graphite derived materials modified by incorporation of
nitrogen, Mater. Chem. Phys., 113 (2009) 946–952.
- D. Nguyen-Thanh, T.J. Bandosz, Activated carbons with metal
containing bentonite binders as adsorbents of hydrogen sulfide,
Carbon, 43 (2005) 359–367.
- M. Seredych, C. Portet, Y. Gogotsi, T.J. Bandosz, Nitrogen
modified carbide-derived carbons as adsorbents of hydrogen
sulfide, J. Colloid Interface Sci., 330 (2009) 60–66.
- A. Bagreev, T.J. Bandosz, H2S adsorption/oxidation on
unmodified activated carbons: importance of prehumidification,
Carbon, 39 (2001) 2303–2311.
- A. Bagreev, J.A. Menendez, I. Dukhno, Y. Tarasenko, T.J.
Bandosz, Bituminous coal-based activated carbons modified
with nitrogen as adsorbents of hydrogen sulfide, Carbon, 42
(2004) 469–476.
- S. Montoya-Suarez, F. Colpas-Castillo, E. Meza-Fuentes, J.
Rodríguez-Ruiz, R. Fernandez-Maestre, Activated carbons from
waste of oil-palm kernel shells, sawdust and tannery leather
scraps and application to chromium (VI), phenol, and methylene
blue dye adsorption, Water Sci. Technol., 73 (2016) 21–27.
- A. Jumasiah, T.G. Chuah, J. Gimbon, T.S.Y. Choong, I. Azni,
Adsorption of basic dye onto palm kernel shell activated
carbon: sorption equilibrium and kinetics studies, Desalination,
186 (2005) 57–64.
- Y.B. Onundi, A.A. Mamun, M.F.A. Khatib, Y.M. Ahmed,
Adsorption of copper, nickel and lead ions from synthetic
semiconductor industrial wastewater by palm shell activated
carbon, Int. J. Environ. Sci. Technol., 7 (2010) 751–758.