References

  1. A. Nezamzadeh-Ejhieh, N. Moazzeni, Sunlight photodecolorization of a mixture of methyl orange and bromocresol green by CuS incorporated in a clinoptilolite zeolite as a heterogeneous catalyst, J. Ind. Eng. Chem., 19 (2013) 1433–1442.
  2. M. Safari, M. Nikazar, M. Dadvar, Photocatalytic degradation of methyl tert-butyl ether (MTBE) by Fe-TiO2 nanoparticles, J. Ind. Eng. Chem., 19 (2013) 1697–1702.
  3. A. Capra, B. Scicolone, Emitter and filter tests for wastewater reuse by drip irrigation, Agric. Water Manage., 68 (2004) 135–149.
  4. N. Mathur, P. Bhatnagar, P. Bakre, Assessing mutagenicity of textile dyes from Pali (Rajasthan) using Ames bioassay, Appl. Ecol. Environ. Res., 4 (2005) 111–118.
  5. C. Namasivayam, D. Kavitha, Removal of Congo Red from water by adsorption onto activated carbon prepared from coir pith, an agricultural solid waste, Dyes Pigments., 54 (2002) 47–58.
  6. M.K. Purkait, A. Maiti, S. Das Gupta, S. De, Removal of Congo red using activated carbon and its regeneration, J. Hazard. Mater., 145 (2007) 287–295.
  7. G. Crini, Non-conventional low-cost adsorbents for dye removal: a review, Bioresour. Technol., 97 (2006) 1061–1085.
  8. M. Khadhraoui, H. Trabelsi, M. Ksibi, S. Bouguerra B. Elleuch, Discoloration and detoxicification of a Congo red dye solution by means of ozone treatment for a possible water reuse, J. Hazard. Mater., 161 (2009) 974–981.
  9. G.K. Parshetti, A.A. Telke, D.C. Kalyani, S.P. Govindwar, Decolorization and detoxification of sulfonated azo dye methyl orange by Kocuria rosea MTCC 1532, J. Hazard. Mater., 176 (2010) 503–509.
  10. R. Andreozzi, V. Caprio, A. Insola, R. Marotta, Advanced oxidation processes (AOP) for water purification and recovery, Catal. Today., 53 (1999) 51–59.
  11. G. Busca, S. Berardinelli, C. Resini, L. Arrighi, Technologies for the removal of phenol from fluid streams: a short review of recent developments, J. Hazard. Mater., 160 (2008) 265–288.
  12. J.M. Herrmann, Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants, Catal. Today., 53 (1999) 115–129.
  13. T.Y. Ma, Z.Y. Yuan, J.L. Cao, Hydrangea-like meso-/macroporous ZnO-CeO2 binary oxide materials: synthesis, photocatalysis and CO oxidation, Eur. J. Inorg. Chem., 5 (2010) 716–724.
  14. X.H. Zhang, X.H. Lu, Y.Q. Shen, J.B. Han, L.Y. Yuan, L. Gong, Z. Xu, X.D. Bai, M. Wei, Y.X. Tong, Y.H. Gao, J. Chen, J. Zhou, Z.L. Wang, Three-dimensional WO3 nanostructures on carbon paper: photoelectrochemical property and visible light driven photocatalysis, Chem. Commun., 47 (2011) 5804–5806.
  15. K. Maeda, M. Higashi, D.L. Lu, R. Abe, K. Domen, Efficient nonsacrificial water splitting through two-step photoexcitation by visible light using a modified oxynitride as a hydrogen evolution photocatalyst, J. Am. Chem. Soc., 132 (2010) 5858–5868.
  16. Y. Wang, Y. Su, L. Qiao, L. Liu, Q. Su, C. Zhu, X. Liu, Synthesis of one-dimensional TiO2/V2O5 branched heterostructures and their visible light photocatalytic activity towards rhodamine B, Nanotechnology, 22 (2011) 225702.
  17. R. Georgekutty, M.K. Seenry, S.C. Pillai, A highly efficient Ag-ZnO photocatalyst: synthesis, properties, and mechanism, J. Phys. Chem. C., 112 (2008) 13563–13570.
  18. Y. Zheng, C. Chen, Y. Zhan, X. Lin, Q. Zheng, K. Wei, J. Zhu, Photocatalytic activity of Ag/ZnO heterostructure nanocatalyst: correlation between structure and property, J. Phys. Chem. C., 112 (2008) 10773–10777.
  19. J.B. Zhong, J.Z. Li, X.Y. He, J. Zeng, Y. Lu, W. Hu and K. Lin, Improved photocatalytic performance of Pd-doped ZnO, Curr. Appl. Phys., 12 (2012) 998–1001.
  20. J. Miao, A. Xie, S. Li, F. Huang, J. Cao, Y. Shen, A novel reducing graphene/polyaniline/cuprous oxide composite hydrogel with unexpected photocatalytic activity for the degradation of Congo red, Appl. Surf. Sci., 360 (2016) 594–600.
  21. N. Guy, S. Cakar, M. Ozacar, Comparison of palladium/zinc oxide photocatalysts prepared by different palladium doping methods for Congo red degradation, J. Colloid Interf. Sci., 466 (2016) 128–137.
  22. S. Shukla, S. Chaudhary, A. Umar, G.R. Chaudhary, S.K. Mehta, Surfactant functionalized tungsten oxide nanoparticles with enhanced photocatalytic activity, Chem. Eng. J., 288 (2016) 423–431.
  23. H. Xiao, F. Qu, A. Umar, X. Wu, Facile synthesis of SnO2 hollow microspheres composed of nanoparticles and their remarkable photocatalytic performance, Mater. Res. Bull., 74 (2016) 284–290.
  24. A. Mayoufi, M. Faouzi Nsib, O. Ahmed, A. Houas, Synthesis, characterization and photocatalytic performance of W, N, S-tridoped TiO2 under visible light irradiation, C. R. Chimie., 18 (2015) 875–882.
  25. E.S. Aazam, Photocatalytic degradation of Congo red under visible light irradiation using Pd–Bi3.84W0.16O6.24 nanocomposite, J. Alloys Compd., 644 (2015) 1–6.
  26. D. Ljubas, G. Smoljanic, H. Juretic, Degradation of methyl orange and Congo red dyes by using TiO2 nanoparticles activated by the solar and the solar-like radiation, J. Environ. Manage., 161 (2015) 83–91.
  27. D. Sanchez Martinez, A. Martinez-dela Cruz, E. Lopez Cuellar, Photocatalytic properties of WO3 nanoparticles obtained by precipitation in presence of urea as complexing agent, Appl. Catal., A, 398 (2011) 179–186.
  28. A. Amirsalari, S. Farjami Shayesteh, Effects of pH and calcination temperature on structural and optical properties of alumina nanoparticles, Superlattices Microstruct., 82 (2015) 507–524.
  29. M. Firouzi, A. Nouri, Synthesis, characterization and application of alumina nanoparticles for photocatalytic degradation of Congo red dye, J. Appl. Chem., 12 (2017) 23–34.
  30. M.F. Daniel, B. Desbat, J.C. Lassegues, B. Gerand, M. Figlarz, Infrared and Raman study of WO3 tungsten trioxides and WO3, xH2O tungsten trioxide tydrates, J. Solid State Chem., 67 (1987) 235–247.
  31. Z. Guo, T. Pereira, O. Choi, Y. Wang, H.T. Hahn, Surface functionalized alumina nanoparticle filled polymeric nanocomposites with enhanced mechanical properties, Mater. Chem., 16 (2006) 2800–2808.
  32. W. Lv, Q. Qiu, F. Wang, S. Wei, B. Liu, Z. Luo, Sonochemical synthesis of cobalt aluminate nanoparticles under various preparation parameters, Ultrason. Sonochem., 17 (2010) 793–801.
  33. U. Janosovits, G. Ziegler, U. Scharf, A. Wokaun, Structural characterization of intermediate species during synthesis of Al2O3 – aerogels, J. Non-Cryst. Solids, 210 (1997) 1–13.
  34. S. Farhadi, S. Panahandehjoo, Spinel-type zinc aluminate (ZnAl2O4) nanoparticles prepared by the co-precipitation method: a novel, green and recyclable heterogeneous catalyst for the acetylation of amines, alcohols and phenols under solvent-free conditions, Appl. Catal., A, 382 (2010) 293–302.
  35. R. Abazari, A.R. Mahjoub, L.A. Saghatforoush, S. Sanati, Characterization and optical properties of spherical WO3 nanoparticles synthesized via the reverse microemulsion process and their photocatalytic behavior, Mater. Lett., 133 (2014) 208–211.
  36. Y. Liu, D. Ma, X. Han, X. Bao, W. Frandsen, D. Wang, D. Su, Hydrothermal synthesis of microscale boehmite and gamma nanoleaves alumina, Mater. Lett., 62 (2008) 1297–1301.
  37. Z. Jin, W. Duan, W. Duan, B. Liu, X. Chen, F. Yang, J. Guo, Indium doped and carbon modified P25 nanocomposites with high visible-light sensitivity for the photocatalytic degradation of organic dyes, Appl. Catal., A, 517 (2016) 129–140.
  38. F.J. Gil Llambías, J. Salvatierra, L. Bouyssieres, M. Escudey, Hydrodesulfurization activity of WO3/γ-alumina prepared by the equilibrium adsorption method, Appl. Catal., 59 (1990) 185–195.
  39. K. Vignesh, M. Rajarajan, A. Suganthi, Visible light assisted photocatalytic performance of Ni and Th co-doped ZnO nanoparticles for the degradation of methylene blue dye, J. Indust. Eng. Chem., 20 (2014) 3826–3833.
  40. O. Mohanta, Y.N. Singhbabu, S.K. Girri, D. Dadhich, N.N. Das, R.K. Sahu, Degradation of Congo red pollutants using microwave derived SrFe12O19: an efficient magnetic photocatalyst under visible light, J. Alloys Compd., 564 (2013) 78–83.
  41. S.M. Lam, J.C. Sin, A.Z. Abdullah, A.R. Mohamed, Transition metal oxide loaded ZnO nanorods: preparation, characterization and their UV–Vis photocatalytic activities, Sep. Purif. Technol., 132 (2014) 378–387.
  42. R. Lamba, A. Umar, S.K. Mehta, S.K. Kansal, Well-crystalline porous ZnO–SnO2 nanosheets: an effective visible-light driven photocatalyst and highly sensitive smart sensor material, Talanta, 131 (2015) 490–498.
  43. W. Zhao, Y. Guo, Y. Faiz, W.T. Yuan, C. Sun, S.M. Wang, Y.H. Deng, Y. Zhuang, Y. Li, X.M. Wang, H. He, S.G. Yang, Facile in-suit synthesis of Ag/AgVO3 one-dimensional hybrid nanoribbons with enhanced performance of plasmonic visiblelight photocatalysis, Appl. Catal., B, 163 (2015) 288–297.