References
- H.W. Paerl, V.J. Paul, Climate change: links to global expansion
of harmful cyanobacteria, Water Res., 46 (2012) 1349–1363.
- G.A. Codd, Cyanobacterial toxins, the perception of water
quality, and the prioritisation of eutrophication control, Ecol.
Eng., 16 (2000) 51–60.
- F. Recknagel, Applications of machine learning to ecological
modelling, Ecol. Modell., 146 (2001) 303–310.
- N. Muttil, K. Chau, Neural network and genetic programming
for modelling coastal algal blooms, Int. J. Environ. Pollut., 28
(2006) 223–238.
- N. Jung, I. Popescu, P. Kelderman, D.P. Solomatine, R.K.
Price, Application of model trees and other machine learning
techniques for algal growth prediction in Yongdam reservoir,
Republic of Korea, J. Hydroinf., 12 (2010) 262–274.
- G.G. Moisen, Classification and Regression Trees, Encyclopedia
of Ecology, Volume 1, Elsevier, Oxford, U.K, 2008, pp. 582–588.
- G. De’ath, K.E. Fabricius, Classification and regression trees:
a powerful yet simple technique for ecological data analysis,
Ecology, 81 (2000) 3178–3192.
- A. Peretyatko, S. Teissier, S. De Backer, L. Triest, Classification
trees as a tool for predicting cyanobacterial blooms,
Hydrobiologia, 689 (2012) 131–146.
- M. Rodrigues, J. de la Riva, An insight into machine-learning
algorithms to model human-caused wildfire occurrence,
Environ. Modell. Software, 57 (2014) 192–201.
- H. He, E.A. Garcia, Learning from imbalanced data, IEEE Trans.
Knowl. Data Eng., 21 (2009) 1263–1284.
- S. Ertekin, J. Huang, L. Bottou, L. Giles, Learning on the Border:
Active Learning in Imbalanced Data Classification, Proceedings
of the Sixteenth ACM Conference on Conference on Information
and Knowledge Management, ACM, Lisbon, Portugal, 2007,
pp. 127–136.
- A. Estabrooks, T. Jo, N. Japkowicz, A multiple resampling
method for learning from imbalanced data sets, Comput. Intell.,
20 (2004) 18–36.
- B. Gong, J. Ordieres-Meré, Prediction of daily maximum ozone
threshold exceedances by preprocessing and ensemble artificial
intelligence techniques: case study of Hong Kong, Environ.
Modell. Software, 84 (2016) 290–303.
- M.Y. Suh, B.H. Kim, K.S. Bae, Fluctuation of environmental
factors and dynamics of phytoplankton communities in lower
part of the Han River, Korean J. Ecol. Environ., 40 (2007)
395–402.
- T.K. Kim, J.H. Choi, K.J. Lee, Y.B. Kim, S.J. Yu, Study on
introduction to predicting indicator of cyanobacteria dominance
in algae bloom warning system of Hangang Basin, J. Korean
Soc. Environ. Eng., 36 (2014) 378–385.
- X. Wu, V. Kumar, J.R. Quinlan, J. Ghosh, Q. Yang, H. Motoda,
G.J. McLachlan, A. Ng, B. Liu, S.Y. Philip, Top 10 algorithms in
data mining, Knowl. Inf. Syst., 14 (2008) 1–37.
- C.D. Sutton, Classification and Regression Trees, Bagging,
and Boosting, Handbook of Statistics, Elsevier, Vol. 24, 2005,
pp. 303–329.
- L. Rokach, Ensemble-based classifiers, Artif. Intell. Rev., 33
(2010) 1–39.
- L. Breiman, Bagging Predictors, Machine Learning, Vol. 24,
1996, pp. 123–140.
- L. Breiman, Random Forests, Machine Learning, Vol. 45, 2001,
pp. 5–32.
- A. Liaw, M. Wiener, Classification and Regression by
randomForest, Vol. 2, 2002, pp. 18–22.
- N.V. Chawla, K.W. Bowyer, L.O. Hall, W.P. Kegelmeyer,
SMOTE: synthetic minority over-sampling technique, J. Artif.
Intell. Res., 16 (2002) 321–357.
- R Core Team. R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna,
Austria, 2016, Available at: https://www.R-project.org/.
- M. Greiner, D. Pfeiffer, R. Smith, Principles and practical
application of the receiver-operating characteristic analysis for
diagnostic tests, Prev. Vet. Med., 45 (2000) 23–41.
- T.G. Dietterich, Ensemble Learning, The Handbook of Brain
Theory and Neural Networks, MIT Press, Cambridge, England,
2nd ed., 2002, pp. 405–408.
- Y. Zhang, M. Bocquet, V. Mallet, C. Seigneur, A. Baklanov,
Real-time air quality forecasting, part I: history, techniques, and
current status, Atmos. Environ., 60 (2012) 632–655.
- A. Ramezankhani, O. Pournik, J. Shahrabi, F. Azizi, F. Hadaegh,
D. Khalili, The impact of oversampling with SMOTE on the
performance of 3 classifiers in prediction of type 2 diabetes,
Med. Decis. Making, 36 (2016) 137–144.
- B.W. Ibelings, M. Vonk, H.F. Los, D.T. van der Molen, W.M.
Mooij, Fuzzy modeling of cyanobacterial surface waterblooms:
validation with NOAA‐AVHRR satellite images, Ecol. Appl., 13
(2003) 1456–1472.
- K.D. Joehnk, J. Huisman, J. Sharples, B. Sommeijer, P.M. Visser,
J.M. Stroom, Summer heatwaves promote blooms of harmful
cyanobacteria, Global Change Biol., 14 (2008) 495–512.
- W.M. Mooij, S. Hülsmann, L.N. De Senerpont Domis, B.A.
Nolet, P.L. Bodelier, P.C. Boers, L.M.D. Pires, H.J. Gons, B.W.
Ibelings, R. Noordhuis, The impact of climate change on lakes
in the Netherlands: a review, Aquat. Ecol., 39 (2005) 381–400.
- H.W. Paerl, J. Huisman, Blooms like it hot, Science, 320 (2008)
57–58.
- B.J. Robson, D.P. Hamilton, Summer flow event induces a
cyanobacterial bloom in a seasonal Western Australian estuary,
Mar. Freshwater Res., 54 (2003) 139–151.
- J. Elliott, I. Jones, S. Thackeray, Testing the sensitivity of
phytoplankton communities to changes in water temperature
and nutrient load, in a temperate lake, Hydrobiologia, 559
(2006) 401–411.
- K. Ha, M. Jang, G. Joo, Spatial and temporal dynamics of
phytoplankton communities along a regulated river system, the
Nakdong River, Korea, Hydrobiologia, 470 (2002) 235–245.
- K. Jeong, D. Kim, G. Joo, Delayed influence of dam storage
and discharge on the determination of seasonal proliferations
of Microcystis aeruginosa and Stephanodiscus hantzschii in a
regulated river system of the lower Nakdong River (South
Korea), Water Res., 41 (2007) 1269–1279.
- Water Environment Ecology Team, Han River (Water
Recreational Activity Area) Algae Warning System Operation
Result of 2016, Water Environment Research Department, Seoul
Metropolitan Government, 2016.