References
- M. Vepsalainen, H. Kivisaari, M. Pulliainen, A. Oikari, M.
Sillanpaa, Removal of toxic pollutants from pulp mill effluents
by electrocoagulation, Sep. Purif. Technol., 81 (2011) 141–150.
- O. Ashrafi, L. Yerushalmi, F. Haghighat, Application of dynamic
models to estimate greenhouse gas emission by wastewater
treatment plants of the pulp and paper industry, Environ. Sci.
Pollut. Res., 20 (2013) 1858–1869.
- A. Pizzichini, C. Russo, C.D. Meo, Purification of pulp and
paper wastewater, with membrane technology, for water reuse
in a closed loop, Desalination, 178 (2005) 351–359.
- M. Manttari, M. Kuosa, J. Kallas, M. Nystrom, Membrane
filtration and ozone treatment of biologically treated effluents
from the pulp and paper industry, J. Membr. Sci., 309 (2008)
112–119.
- A.Y. Bagastyo, J. Keller, Y. Poussade, D.J. Batstone,
Characterisation and removal of recalcitrants in reverse osmosis
concentrates from water reclamation plants, Water Res., 45
(2011) 2415–2427.
- A.P. Gonzalez, R. Ibanez, P. Gomez, A.M. Urtiaga, I. Ortiz,
J.A. Irabien, Nanofiltration separation of polyvalent and
monovalent anions in desalination brines, J. Membr. Sci., 473
(2015) 16–27.
- P. Westerhoff, H. Moon, D. Minakata, J. Crittenden, Oxidation
of organics in retentates from reverse osmosis wastewater reuse
facilities, Water Res., 43 (2009) 3992–3998.
- T. Zhou, T.T. Lim, S.S. Chin, A.G. Fane, Treatment of organics
in reverse osmosis concentrate from a municipal wastewater
reclamation plant: feasibility test of advanced oxidation
processes with/without pretreatment, Chem. Eng. J., 166 (2011)
932–939.
- E. Dialynas, D. Mantzavinos, E. Diamadopoulos, Advanced
treatment of the reverse osmosis concentrate produced during
reclamation of municipal wastewater, Water Res., 42 (2008)
4603–4608.
- B.V. Bruggen, A. Koninckx, C. Vandecasteele, Separation
of monovalent and divalent ions from aqueous solution by
electrodialysis and nanofiltration, Water Res., 38 (2004) 1347–1353.
- F. Zhao, K. Xu, H. Ren, L. Ding, J. Geng, Y. Zhang, Combined
effects of organic matter and calcium on biofouling of
nanofiltration membranes, J. Membr. Sci., 486 (2015) 177–188.
- A.A. Amoudi, R.W. Lovitt, Fouling strategies and the cleaning
system of NF membranes and factors affecting cleaning
efficiency, J. Membr. Sci., 303 (2007) 6–28.
- M. Reig, S. Casas, O. Gibert, C. Valderrama, J.L. Cortina,
Integration of nanofiltration and bipolar electrodialysis for
valorization of seawater desalination brines: production of
drinking and waste water treatment chemicals, Desalination,
382 (2016) 13–20.
- N.F. Bishop, O. Nir, O. Lahav, V. Freger, Predicting the
rejection of major seawater ions by spiral-wound nanofiltration
membranes, Environ. Sci. Technol., 49 (2015) 8631–8638.
- T.Y. Liu, C.K. Li, B. Pang, B. Van der Bruggen, X.L. Wang,
Fabrication of a dual-layer (CA/PVDF) hollow fiber membrane
for RO concentrate treatment, Desalination, 365 (2015) 57–69.
- C.M. Tonko, A. Kiraly, P. Mizsey, G. Patzay, E. Csefalvay,
Limitation of hardness from thermal water by means of
nanofiltration, Water Sci. Technol., 67 (2013) 2025–2032.
- G.M. Ayoub, R.M. Zayyat, M.A. Hindi, Precipitation softening:
a pretreatment process for seawater desalination, Environ. Sci.
Pollut. Res., 21 (2014) 2876–2887.
- J. Kaewsuk, D.Y. Lee, T.S. Lee, G.T. Seo, Effect of ion composition
on nanofiltration rejection for desalination pretreatment, Desal.
Wat. Treat., 43 (2012) 260–266.
- H. Saitua, R. Gil, A.P. Padilla, Experimental investigation on
arsenic removal with a nanofiltration pilot plant from naturally
contaminated groundwater, Desalination, 274 (2011) 1–6.
- P. Dydo, M. Turek, J. Ciba, Scaling analysis of nanofiltration
systems fed with saturated calcium sulfate solutions in the
presence of carbonate ions, Desalination, 159 (2003) 245–251.
- A. Zirehpour, A. Rahimpour, M. Jahanshahi, M. Peyravi,
Mixed matrix membrane application for olive oil wastewater
treatment: process optimization based on Taguchi design
method, J. Environ. Manage., 132 (2014) 113–120.
- S. Pourjafar, M. Jahanshahi, A. Rahimpour, Optimization
of TiO2 modified poly(vinyl alcohol) thin film composite
nanofiltration membranes using Taguchi method, Desalination,
315 (2013) 107–114.
- A. Salahi, T. Mohammadi, Oily wastewater treatment by
ultrafiltration using Taguchi experimental design, Water Sci.
Technol., 63 (2011) 1476–1484.
- A. Idris, A.F. Ismail, M.Y. Noordin, S.J. Shilton, Optimization of
cellulose acetate hollow fiber reverse osmosis membrane production
using Taguchi method, J. Membr. Sci., 205 (2002) 223–237.
- Z.W. Song, L.Y. Jiang, Optimization of morphology and
performance of PVDF hollow fiber for direct contact membrane
distillation using experimental design, Chem. Eng. Sci., 101
(2013) 130–143.
- R. Hepsen, Y. Kaya, Optimization of membrane fouling using
experimental design: an example from dairy wastewater
treatment, Ind. Eng. Chem. Res., 51 (2012) 16074–16084.
- J. Fang, B. Deng, Rejection and modeling of arsenate by nanofiltration:
contributions of convection, diffusion and electromigration to
arsenic transport, J. Membr. Sci., 453 (2014) 42–51.
- G. Yang, W. Xing, N. Xu, Concentration polarization in spiralwound
nanofiltration membrane elements, Desalination, 154
(2003) 89–99.
- A.I.C. Morao, A. Szymczyk, P. Fievet, A.M.B. Alves, Modelling
the separation by nanofiltration of a multi-ionic solution relevant
to an industrial process, J. Membr. Sci., 322 (2008) 320–330.
- C.V. Gherasim, P. Mikulasek, Influence of operating variables
on the removal of heavy metal ions from aqueous solutions by
nanofiltration, Desalination, 343 (2014) 67–74.
- E.M.V. Hoek, M. Elimelech, Cake-enhanced concentration
polarization: a new fouling mechanism for salt-rejecting
membranes, Environ. Sci. Technol., 37 (2003) 5581–5588.
- G. Hagmeyer, R. Gimbel, Modelling the salt rejection of
nanofiltration membranes for ternary ion mixtures and for
single salts at different pH values, Desalination, 117 (1998)
247–256.
- S. Bandini, D. Vezzani, Nanofiltration modeling: the role of
dielectric exclusion in membrane characterization, Chem. Eng.
Sci., 58 (2003) 3303–3326.
- A.I.C. Morao, A.M.B. Alves, V. Geraldes, Concentration
polarization in a reverse osmosis/nanofiltration plate-andframe
membrane module, J. Membr. Sci., 325 (2008) 580–591.
- J. Schaep, C. Vandecasteele, A.W. Mohammad, W.R. Bowen,
Modelling the retention of ionic components for different
nanofiltration membranes, Sep. Purif. Technol., 22–23 (2001)
169–179.
- W.R. Bowen, B. Cassey, P. Jones, D.L. Oatley, Modelling the
performance of membrane nanofiltration—application to
an industrially relevant separation, J. Membr. Sci., 242 (2004)
211–220.
- A. Szymczyk, C. Labbez, P. Fievet, A. Vidonne, A. Foissy, J.
Pagetti, Contribution of convection, diffusion and migration to
electrolyte transport through nanofiltration membranes, Adv.
Colloid Interface Sci., 103 (2003) 77–94.
- C. Mazzoni, L. Bruni, S. Bandini, Nanofiltration: role of the
electrolyte and pH on desal DK performances, Ind. Eng. Chem.
Res., 46 (2007) 2254–2262.
- M.D. Afonso, Surface charge on loose nanofiltration membranes,
Desalination, 191 (2006) 262–272.
- A.I.C. Morao, A.M.B. Alves, M.D. Afonso, Concentration of
clavulanic acid broths: influence of the membrane surface charge
density on NF operation, J. Membr. Sci., 281 (2006) 417–428.
- S. Bandini, Modelling the mechanism of charge formation in NF
membranes: theory and application, J. Membr. Sci., 264 (2005)
75–86.
- C. Labbez, P. Fievet, A. Szymczyk, A. Vidonne, A. Foissy, J.
Pagetti, Retention of mineral salts by a polyamide nanofiltration
membrane, Sep. Purif. Technol., 30 (2003) 47–55.
- B. Tansel, J. Sager, T. Rector, J. Garland, R.F. Strayer, L. Levine,
M. Roberts, M. Hummerick, J. Bauer, Significance of hydrated
radius and hydration shells on ionic permeability during
nanofiltration in dead end and cross flow modes, Sep. Purif.
Technol., 51 (2006) 40–47.
- A.G. Volkov, S. Paula, D.W. Deamer, Two mechanisms of
permeation of small neutral molecules and hydrated ions
across phospholipid bilayers, Bioelectrochem. Bioenerg., 42
(1997) 153–160.
- J. Zhou, X.H. Lu, Y.R. Wang, J. Shi, Molecular dynamics study
on ionic hydration, Fluid Phase Equilib., 194 (2002) 257–270.
- H. Binder, O. Zschornig, The effect of metal cations on the
phase behavior and hydration characteristics of phospholipid
membranes, Chem. Phys. Lipids, 115 (2002) 39–61.
- A.E. Childress, M. Elimelech, Effect of solution chemistry on the
surface charge of polymeric reverse osmosis and nanofiltration
membranes, J. Membr. Sci., 119 (1996) 253–268.
- L. Bruni, S. Bandini, The role of the electrolyte on the mechanism
of charge formation in polyamide nanofiltration membranes, J.
Membr. Sci., 308 (2008) 136–151.
- L. Bruni, S. Bandini, Studies on the role of site-binding
and competitive adsorption in determining the charge of
nanofiltration membranes, Desalination, 241 (2009) 315–330.
- S. Deon, A. Escoda, P. Fievet, A transport model considering
charge adsorption inside pores to describe salts rejection
by nanofiltration membranes, Chem. Eng. Sci., 66 (2011)
2823–2832.
- M.R. Teixeira, M.J. Rosa, M. Nystrom, The role of membrane
charge on nanofiltration performance, J. Membr. Sci., 265 (2005)
160–166.
- A.E. Childress, M. Elimelech, Relating nanofiltration
membrane performance to membrane charge (electrokinetic)
characteristics, Environ. Sci. Technol., 34 (2000) 3710–3716.
- J. Schaep, C. Vandecasteele, Evaluating the charge of
nanofiltration membranes, J. Membr. Sci., 188 (2001) 129–136.